1/7
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Constant Space – O(1)
The space used does not increase with input size.
Example: Swapping two variables
def swap(a, b):
a, b = b, a # Uses only a fixed amount of space
return a, b
x, y = 5, 10
print(swap(x, y)) # Output: (10, 5)
Logarithmic Space – O(log n)
Space grows logarithmically, usually seen in recursive algorithms that use divide-and-conquer.
Example: Binary Search (Recursive)
def binary_search(arr, target, left, right):
if left > right:
return -1 # Base case
mid = (left + right) // 2
if arr[mid] == target:
return mid
elif arr[mid] < target:
return binary_search(arr, target, mid + 1, right)
else:
return binary_search(arr, target, left, mid - 1)
arr = [1, 3, 5, 7, 9, 11]
print(binary_search(arr, 7, 0, len(arr) - 1)) # Output: 3
Linear Space – O(n)
Space grows linearly with input size.
Example: Storing results in an array
def create_list(n):
arr = [] # Extra space grows linearly
for i in range(n):
arr.append(i)
return arr
print(create_list(5)) # Output: [0, 1, 2, 3, 4]
Linearithmic Space – O(n log n)
Space grows at a rate of nlognn \log nnlogn, often seen in divide-and-conquer sorting algorithms.
Example: Merge Sort (Recursive)
def merge_sort(arr):
if len(arr) <= 1:
return arr
mid = len(arr) // 2
left = merge_sort(arr[:mid])
right = merge_sort(arr[mid:])
return merge(left, right)
def merge(left, right):
result = []
i = j = 0
while i < len(left) and j < len(right):
if left[i] < right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
result.extend(left[i:])
result.extend(right[j:])
return result
arr = [5, 2, 9, 1, 5, 6]
print(merge_sort(arr)) # Output: [1, 2, 5, 5, 6, 9]
Quadratic Space – O(n²)
Space grows quadratically with input size.
Example: Storing all pairs in a 2D list
def create_pairs(arr):
n = len(arr)
pairs = [[0] * n for _ in range(n)] # Creates an n×n matrix
for i in range(n):
for j in range(n):
pairs[i][j] = (arr[i], arr[j])
return pairs
arr = [1, 2, 3]
print(create_pairs(arr))
Cubic Space – O(n³)
Space grows cubically, often in multi-dimensional problems.
Example: Creating a 3D matrix
def create_3D_matrix(n):
return [[[0] * n for _ in range(n)] for _ in range(n)] # n × n × n matrix
matrix = create_3D_matrix(3)
print(len(matrix)) # Output: 3
Exponential Space – O(2ⁿ)
Space doubles with each additional input, often in recursive problems like the Fibonacci sequence.
Example: Fibonacci (Recursive)
def fibonacci(n):
if n <= 1:
return n
return fibonacci(n-1) + fibonacci(n-2)
print(fibonacci(5)) # Output: 5
Factorial Space – O(n!)
Space grows factorially, often seen in backtracking problems.
Example: Storing all permutations of a string
from itertools import permutations
def generate_permutations(s):
return list(permutations(s)) # Stores all permutations in memory
print(generate_permutations("abc"))