1/17
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
d/dx[a^u]
a^{u}\ln\left(a\right)u^{\prime}
d/dx[log base a u]
\frac{u^{\prime}}{u\ln a}
\int_{}^{}a^{u}du
\left(\frac{1}{\ln a}\right)a^{u}+C
d/dx[arcsin u]
\frac{u^{\prime}}{\sqrt{1-u^2}}
d/dx[arctan u]
\frac{u^{\prime}}{1+u^2}
d/dx[arcsec u]
\frac{u^{\prime}}{\left|u\right|\sqrt{u^2-1}}
\int_{}^{}\frac{1}{\sqrt{a^2-u^2}}du
\arcsin\left(\frac{u}{a}\right)+\mathbb{C}
\int_{}^{}\frac{1}{a^2+u^2}du
\frac{1}{a}\arctan\left(\frac{u^{}}{a}\right)+C
\int_{}^{}\frac{1}{u\sqrt{u^2-a^2}}du
\frac{1}{a}\operatorname{arcsec}\left(\frac{\left|u\right|}{a}\right)+C
\int_{}^{}\sin xdx
-\cos x+C
\int_{}^{}\cos xdx
\sin x+C
\int_{}^{}\tan xdx
-\ln\left|\cos x\right|+C
\ln\left|\sin x\right|+C
\int_{}^{}\sec xdx
\ln\left|\sec x+\tan x\right|+C
\int_{}^{}\csc xdx
-\ln\left|\csc x+\cot x\right|+C
Compound Interest (n times)
A=P\left(1+\frac{r}{n}\right)^{nt}
Continuous Compounding
A=Pe^{rt}
Newton’s Law of Cooling
dy/dt=k\left(y-T_{surr}\right)
y=temp of object
t=time
Tsurr=temp of surrounding