Looks like no one added any tags here yet for you.
Prepared, filled and sterilized. Method of choice whenever possible.
a. Terminal sterilization
b. Aseptic processing
a. Terminal sterilization
Components are sterilized separately and assembled.
a. Terminal sterilization
b. Aseptic processing
b. Aseptic processing
Sterilization method:
1) Uses autoclave
2) Sterilize through protein coagulation
a. Moist heat sterilization
b. Dry heat sterilization
c. Gas sterilization
d. Membrane filtration
e. Ionizing radiation
a. Moist heat sterilization
Setting of autoclave for moist heat sterilization:
a. 120C, 20 psi, 15-20 minutes
b. 121C, 15 psi, 15-20 minutes
c. 125C, 20 psi, 15-30 minutes
d. 121C, 15 psi, 15-30 minutes
b. 121C, 15 psi, 15-20 minutes
Sterilization method:
1) Uses oven
2) Ideal for sterilization of glass containers
a. Moist heat sterilization
b. Dry heat sterilization
c. Gas sterilization
d. Membrane filtration
e. Ionizing radiation
b. Dry heat sterilization
Setting of oven for dry heat sterilization:
a. 160-170C, 2-4 hours
b. 150-170C, 2-4 hours
c. 160-170C, 3-5 hours
d. 150-170C, 3-5 hours
a. 160-170C, 2-4 hours
Sterilization method:
1) Uses ethylene oxide and beta-propiolactone.
2) Sterilization of plastic containers.
a. Moist heat sterilization
b. Dry heat sterilization
c. Gas sterilization
d. Membrane filtration
e. Ionizing radiation
c. Gas sterilization
The following are used for gas streilization:
a. Ethylene oxide
b. Beta-propiolactone
c. Carbon monoxide
d. a and b
e. a and c
f. All
d. a and b:
Ethylene oxide
Beta-propiolactone
Sterilization method:
Ideal for heat labile solutions.
a. Moist heat sterilization
b. Dry heat sterilization
c. Gas sterilization
d. Membrane filtration
e. Ionizing radiation
d. Membrane filtration
Sterilization method:
1) Use gamma rays, cathode rays
2) Most ideal for workplace
a. Moist heat sterilization
b. Dry heat sterilization
c. Gas sterilization
d. Membrane filtration
e. Ionizing radiation
e. Ionizing radiation
Sterilization method MOA:
Dry heat sterilization
a. Protein coagulation
b. Oxidation
c. Alkylation
d. Physical separation
e. DNA mutation
b. Oxidation
Sterilization method MOA:
Membrane filtration
a. Protein coagulation
b. Oxidation
c. Alkylation
d. Physical separation
e. DNA mutation
d. Physical separation
Sterilization method MOA:
Gas sterilization
a. Protein coagulation
b. Oxidation
c. Alkylation
d. Physical separation
e. DNA mutation
c. Alkylation
Sterilization method MOA:
Moist heat sterilization
a. Protein coagulation
b. Oxidation
c. Alkylation
d. Physical separation
e. DNA mutation
a. Protein coagulation
Sterilization method MOA:
Ionizing radiation
a. Protein coagulation
b. Oxidation
c. Alkylation
d. Physical separation
e. DNA mutation
e. DNA mutation
Biological indicator for dry heat sterilization.
a. Bacillus geostearothermophilus
b. Bacillus subtilis
c. Bacillus pumilus
d. Brevudimonas diminuta
b. Bacillus subtilis
Biological indicator for membrane filtration.
a. Bacillus geostearothermophilus
b. Bacillus subtilis
c. Bacillus pumilus
d. Brevudimonas diminuta
d. Brevudimonas diminuta
Biological indicator for ionizing radiation.
a. Bacillus geostearothermophilus
b. Bacillus subtilis
c. Bacillus pumilus
d. Brevudimonas diminuta
c. Bacillus pumilus
Biological indicator for moist heat sterilization.
a. Bacillus geostearothermophilus
b. Bacillus subtilis
c. Bacillus pumilus
d. Brevudimonas diminuta
a. Bacillus geostearothermophilus
Depyrogenation is performed by heating in oven with the setting:
a. 180°C for 4 hours
b. 250°C for 45 minutes
c. 650°C for 1 minute
d. a and b
e. b and c
f. All
f. All:
180°C for 4 hours
250°C for 45 minutes
650°C for 1 minute
Sterile production areas include
Clean room
Ante room
Buffer area
Compounding area
Aseptic filling area
Quarantine area
Finishing area
a. True
b. False
a. True
Sterile production area:
Areas with reduced tendency of environmental contamination.
a. Clean room
b. Ante room
c. Buffer area
d. Compounding area
e. Aseptic filling area
f. Quarantine area
a. Clean room
True about HEPA Filter except:
a. High Efficiency Particulate Air
b. Used to cleanse air
c. Remove 99.99% (high efficiency) air borne particles which are 0.3 um or larger.
d. Parts include blower, pre-filter, electrostatic precipitator
e. None
c. Remove 99.99% (high efficiency) air borne particles which are 0.3 um or larger:
It remove 99.97% NOT 99.99%
HEPA filter remove 99.97% or air borne particles which are
a. 0.1 um or larger
b. 0.2 um or larger
c. 0.3 um or larger
d. 0.4 um or larger
c. 0.3 um or larger
Parts of HEPA filter except:
a. Blower
b. Pre-filter
c. Electrostatic precipitator
d. None
d. None
Quality control test to determine if HEPA filter is working.
a. Dioctylphthalate test
b. Aniline phthalate test
c. HC Emery 3004
d. a and b
e. a and c
f. All
e. a and c:
Dioctylphthalate test
HC Emery 3004
Pressure of airflow that prevent entry of contaminated air into clean room.
a. Negative pressure airflow
b. Positive pressure airflow
c. Strong pressure airflow
d. Soft pressure airflow
b. Positive pressure airflow
Sterile production area:
Area for personal cleaning such as changing clothes.
a. Clean room
b. Ante room
c. Buffer area
d. Compounding area
e. Aseptic filling area
f. Quarantine area
b. Ante room
Ante room is Class
a. 100
b. 1,000
c. 100,000
d. 1,000,000
c. 100,000
Ante room is Class 100,000 wherein there is not more than 100,000 particles with size > 0.5 um per cubic foot of air.
a. True
b. False
a. True
Sterile production area:
Staging of supplies & equipment for manufacturing.
a. Clean room
b. Ante room
c. Buffer area
d. Compounding area
e. Aseptic filling area
f. Quarantine area
c. Buffer area
Buffer area is Class
a. 100
b. 1,000
c. 10,000
d. 100,000
c. 10,000
Buffer area is Class 10,000 wherein not more than 10,000 particles with size > 0.5 um per cubic foot of air.
a. True
b. False
a. True
Sterile production area:
Contains laminar flow hood, biological safety cabinets, barrier isolutions.
a. Clean room
b. Ante room
c. Buffer area
d. Compounding area
e. Aseptic filling area
f. Quarantine area
d. Compounding area
Compounding area is class:
a. 100
b. 1,000
c. 10,000
d. 100,000
a. 100
Especially designed to create class 100 environment.
a. Laminar flow hood
b. HEPA filter
c. Biological safety
d. Barrier isolations
a. Laminar flow hood
Compounding area is Class 100 and Grade A.
a. True
b. False
a. True
Direction of air in laminar flow hood:
a. Horizontal
b. Vertical
c. Both
c. Both
Biological safety cabinets has _____ flow hoods in which a portion of the HEPAfiltered air is recirculated a second time.
a. Horizontal
b. Vertical
c. Positive
d. Negative
b. Vertical
Aseptic filling area is class:
a. 100
b. 1,000
c. 10,000
d. 100,000
a. 100
Aseptic filling area is class 100 wherein not more than 100 particles with size > 0.5 um per cubic foot of air.
a. True
b. False
a. True
Sterile pharmaceutical production
1- Filtration
2- Compounding
3- Cleaning
4- Sealing
5- Filling
a. 32154
b. 31254
c. 32145
d. 31254
a. 32154
Compounding of sterile powders
a. Spray drying
b. Freeze drying or lyophilization
c. Air drying
d. a and b
e. b and c
f. All
d. a and b:
Spray drying
Freeze drying or lyophilization
Sterile powder compounding mechanism:
a. Oxidation
b. Sublimation
c. Alkylation
d. Protein coagulation
b. Sublimation
Filtration:
Removal of 2-3 um size particles.
a. Clarification
b. Cold filtration
a. Clarification
Filtration:
Removal of 0.2-0.3 um size particles
a. Clarification
b. Cold filtration
b. Cold filtration
Sterile product filling method:
Most common.
a. Volumetric filling
b. Pressure/Gravity filling
c. Net weight filling
a. Volumetric filling
Sterile product filling method:
For sterile powders in vials.
a. Volumetric filling
b. Pressure/Gravity filling
c. Net weight filling
c. Net weight filling
Sterile product filling method that is hand operated.
a. Gravity filling
b. Pressure filling
c. Vacuum filling
a. Gravity filling
Sterile product filling method that is semiautomatic.
a. Gravity filling
b. Pressure filling
c. Vacuum filling
b. Pressure filling
Sterile product filling method that is fully automated.
a. Gravity filling
b. Pressure filling
c. Vacuum filling
c. Vacuum filling
Sealing method for ampules except:
a. Tip sealing
b. Bead sealing
c. Pull sealing
d. Siliconization and Halogenization
e. None
d. Siliconization and Halogenization
Sealing method for vials.
a. Siliconization
b. Halogenization
c. Lyophilization
d. a and b
e. b and c
f. All
d. a and b
Siliconization
Halogenization
Siliconization and Halogenaization:
a. Enables easy insertion of rubber closures onto vials.
b. Produce less friction during stoppering & sealing.
c. Both
d. None
c. Both
Laminar flow enclosure:
a. These hoods provides a total sweep of the confined area, since the entire body of air moves with uniform velocity along lines originating through the HEPA filter, occupying the entire side of the parenteral area.
b. Provide circulation of clean, sterile air inside the hood.
c. Both
c. Both
Vapor lamps used in sterile production areas
a. UV
b. Mercury
c. IR
d. a and b
e. b and c
f. All
d. a and b:
UV
Mercury
UV/mercury vapor lamps are present in
a. Clean-up area
b. Aseptic area
c. Compounding area
d. a and b
e. b and c
f. All
f. All
Clean-up area
Aseptic area
Compounding area
Environmental control method:
Collection of air sample into a measured volume of nutrient broth, in an impinger.
a. Air sampling techniques
b. Total sterility tests
c. Instrumental scanners
a. Air sampling techniques
Broth is the source of microorganism food in which presence of microorganism is indicated by turbidity.
a. True
b. False
a. True
Environmental control method:
Best indication of the efficiency of an aseptic filling process.
a. Air sampling techniques
b. Total sterility tests
c. Instrumental scanners
b. Total sterility tests
Medium for total sterility test:
a. Fluid Thioglycollate Medium (FTM)
b. Trypticase soy broth (TSB)
c. Both
d. None
c. Both
Environmental control method:
Measurement of light-scattered from particles passed through the optical system.
a. Air sampling techniques
b. Total sterility tests
c. Instrumental scanners
c. Instrumental scanners
Filter type for sterilization:
Liberate alkaline substances, heavy metals, fibers.
a. Asbestos pads
b. Cellulose ester
c. Diatomaceous earth candles
d. Sintered glass candles/disc
e. Unglazed porcelain candles
a. Asbestos pads
Filter type for sterilization:
Do not liberate any constituents.
a. Asbestos pads
b. Cellulose ester
c. Diatomaceous earth candles
d. Sintered glass candles/disc
e. Unglazed porcelain candles
b. Cellulose ester
Filter type for sterilization:
Liberate alkaline substances, heavy metals, fractured atoms.
a. Asbestos pads
b. Cellulose ester
c. Diatomaceous earth candles
d. Sintered glass candles/disc
e. Unglazed porcelain candles
c. Diatomaceous earth candles
Filter type for sterilization:
Liberate glass beads.
a. Asbestos pads
b. Cellulose ester
c. Diatomaceous earth candles
d. Sintered glass candles/disc
e. Unglazed porcelain candles
d. Sintered glass candles/disc
Filter type for sterilization:
Liberate clay particles.
a. Asbestos pads
b. Cellulose ester
c. Diatomaceous earth candles
d. Sintered glass candles/disc
e. Unglazed porcelain candles
e. Unglazed porcelain candles
Principal components of asbestos pads except:
a. Asbestos fibers
b. Wood cellulose
c. Cellulose acetate
d. None
c. Cellulose acetate
Cellulose ester principal components
a. Cellulose acetate
b. Cellulose nitrate
c. Both
d. None
c. Both
Diatomaceous earth candles include diatoms of
a. SiO2
b. Fe2O3
c. Both
d. None
c. Both
Principal components of sintered glass candles:
a. Borosilicate glass
b. Soda lime
c. Cellulose acetate
d. Wood cellulose
a. Borosilicate glass
Principal components of unglazed porcelain candles:
a. Clay
b. Silicon dioxide
c. Borosilicate glass
d. a and b
e. b and c
f. All
d. a and b:
Clay
Silicon dioxide
Filter type for sterilization:
Adsorbs large charged ion and raises pH.
a. Asbestos pads
b. Cellulose ester
c. Diatomaceous earth candles
d. Sintered glass candles/disc
e. a and c
f. a and b
e. a and c:
Asbestos pad
Diatomaceous earth candles
Filter type for sterilization:
Negligible effect on solutions.
a. Sintered glass candles/disc
b. Unglazed porcelain candles
c. Cellulose ester
d. a and b
e. b and c
f. All
d. a and b:
Sintered glass candles/disc
Unglazed porcelain candles
Filter type for sterilization:
No effect on solutions.
a. Sintered glass candles/disc
b. Unglazed porcelain candles
c. Cellulose ester
d. a and b
e. b and c
f. All
c. Cellulose ester
In ampules, withdrawal of the delivery tube should not allow the hanging drop from the tip.
a. True
b. False
a. True
Filling machine for sterile products should be equipped with retraction device.
a. True
b. False
a. True
Filling method for sterile solids such as antibiotics.
a. Gravity
b. Pressure pump filling machine
c. Vacuum filling machine
d. Auger or filling wheel
d. Auger or filling wheel
Filling method for large volume parenteral.
a. Gravity
b. Pressure pump filling machine
c. Vacuum filling machine
d. Auger or filling wheel
b. Pressure pump filling machine
Filling method for small volume.
a. Gravity
b. Pressure pump filling machine
c. Vacuum filling machine
d. Auger or filling wheel
c. Vacuum filling machine
Type of ampule sealing:
Melting enough glass at the tip of the ampule neck, to form a bead and close the opening.
a. Tip/Bead sealing
b. Pull sealing
a. Tip/Bead sealing
Tip/Bead sealing:
a. Rapid
b. Used high temperature gas-oxygen flame
c. Neck must be heated evenly on all sides
d. Used for sterile liquids filled in standard ampules
e. Stationary burners on opposite sides of the stationary ampules.
f. All
f. All
Flame used in tip/bead sealing is ______ and tech grade oxygen at 10 to 20 psi.
a. Butane
b. Propane
c. Pentane
d. Hexane
b. Propane
Flame used in tip/bead sealing is propane and tech grade oxygen at _____ psi.
a. 10 to 20
b. 5 to 10
c. 15 to 20
d. 10 to 15
a. 10 to 20
Type of ampule sealing:
Heating the neck (below the tip) of the ampule, leaving enough of the tip for grasping with forceps or other mechanical pulling device.
a. Tip/Bead sealing
b. Pull sealing
b. Pull sealing
In pull sealing, ampule is rotated in a single burner.
a. True
b. False
a. True
Pull seal method is slower and seal less than tip seal method.
a. True
b. False
b. False:
Pull seal method is SLOWER, but SEALS MORE.
Type of ampule sealing:
For sterile liquids filled in standard ampoules
a. Tip/Bead sealing
b. Pull sealing
a. Tip/Bead sealing
Type of ampule sealing:
Can also be for sterile powders.
a. Tip/Bead sealing
b. Pull sealing
b. Pull sealing
Type of ampule sealing:
Standard ampoules.
a. Tip/Bead sealing
b. Pull sealing
a. Tip/Bead sealing
Type of ampule sealing:
Funnel-topped ampoules.
a. Tip/Bead sealing
b. Pull sealing
b. Pull sealing
In filling of ampule, filling needle must not touch the sides/walls of the ampule.
a. True
b. False
a. True
Fill range for ampule.
a. 1mL to 20mL
b. 2mL to 10mL
c. 3mL to 15mL
d. 5mL to 20mL
a. 1mL to 20mL
Sealing of vials and bottles.
a. Closing the opening is through a rubber closure/stopper
b. The stopper must fit the container lip snug enough so that its elasticity will permit adjustment to slight irregularities in the container lip and neck.
c. Both
d. None
c. Both
Halogenated and siliconized rubber closures produce less friction upon insertion.
a. True
b. False
a. True
Produce less friction upon closure
a. Halogenated rubber closure
b. Siliconized rubber closure
c. Aluminum caps
d. a and b
e. b and c
d. a and c
d. a and b:
Halogenated rubber closure
Siliconized rubber closure
Can lead to crimpling.
a. Halogenated rubber closure
b. Siliconized rubber closure
c. Aluminum caps
d. a and b
e. b and c
d. a and c
c. Aluminum caps
Thermal method of parenteral product sterilization except:
a. Dry Heat Method
b. Moist Heat Method
c. Inspissation
d. Tyndallization
e. UV Irradiation
f. None
e. UV Irradiation
Fractional method of sterilization of parenteral products.
a. Inspissation
b. Tyndallization
c. Both
d. None
c. Both
Non-thermal method of parenteral product sterilization except:
a. UV Irradiation
b. Ionization
c. Radiation
d. Sterilization by Membrane Filtration
e. Surface disinfection
f. None
e. Surface disinfection