1/63
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Pythagorean Identity (sin)
sin²(x)+cos²(x)=1
Pythagorean Identity (sec)
1+tan²(x)=sec²(x)
Pythagorean Identity (csc)
1+cot²(x)=csc²(x)
sin(-x)=
-sin(x)
cos(-x)=
cos(x)
tan(-x)=
-tan(x)
sin(A+B)=
sin(A)cos(B)+cos(A)sin(B)
sin(A-B)=
sin(A)cos(B)-sin(B)cos(A)
cos(A+B)=
cos(A)cos(B)-sin(A)sin(B)
cos(A-B)=
cos(A)cos(B)+sin(A)sin(B)
sin(2x)=
2sin(x)cos(x)
cos(2x)=
cos²(x)-sin²(x)=2cos²(x)-1=1-2sin²(x)
sin²(x)=
1/2(1-cos(2x)
cos²(x)=
1/2(1+cos(2x))
A function is even if…
f(x)=f(-x) for every x in the function’s domain.
Every even function is symmetric about the…
y-axis
A function is odd if…
-f(x)=f(-x) for every x in the function’s domain
Every odd function is symmetric about the…
origin
A function f(x) is periodic with period p if…
f(x+p)=f(x) for every value of x.
The period of the function y=Asin(Bx+C) or y=Acos(Bx+C) is…
2pi/abs(B)
The amplitude of the function y=Asin(Bx+C) or y=Acos(Bx+C) is…
abs(A)
The period of y=tan(x) is…
pi
e as a limit of n as n approaches 0
lim n→0(1+n/1)^(1/n)=e
e as a limit of n as n approaches infinity
lim n→infinity(1+1/n)^n=e
Rolle’s Theorem - If f is continuous on [a, b] and differentiable on (a, b) such that f(a)=f(b), then…
there is at least one number c in the open interval (a, b) such that f’(c)=0.
Where are the only candidates for an absolute min or max on an interval?
Where f’(x)=0 or does not exist and the endpoints of the interval
If f(x) is an odd function, then the integral from -a to a equals…
0
If f(x) is an even function, then the integral from -a to a equals…
2*the integral from 0 to a
If g(x) is greater than or equal to f(x) on [a, b], then the integral from a to b of g(x) is…
greater than or equal to the integral from a to b of f(x)
Fundamental Theorem of Calculus
The integral from a to b of f(x)dx equals F(b)-F(a), where F’(x)=f(x)
d/dx(x^n)=
nx^(n-1)
d/dx(fg)=
f’g+fg’
d/dx(f/g)=
(f’g-fg’)/g²
d/dx(f(g(x))
f’(g(x))*g’(x)
d/dx(sin(x))
cos(x)
d/dx(cos(x))
-sin(x)
d/dx(tan(x))
sec²(x)
d/dx(cot(x))
-csc²(x)
d/dx(sec(x))
sec(x)tan(x)
d/dx(csc(x))
-csc(x)cot(x)
d/dx(e^x)
e^x
d/dx(a^x)
a^x*ln(a)
d/dx(ln(x))
1/x
d/dx(sin-1(x))
1/sqrt(1-x²)
d/dx(tan-1(x))
1/1+x²
d/dx(sec-1(x))
1/(abs(x)sqrt(x²-1))
Chain Rule: dy/dx=
dy/du*du/dx
Integral of a dx where a is a constant
ax+C
Integral of xn dx where n is a constant not equal to -1
x^(n+1)/(n+1)+C
Integral of x-1
ln|x|+C
Integral of ex dx
e^x+C
Integral of ax dx where a is a constant
a^x/ln(a)+C
Integral of ln(x) dx
x*ln(x)-x+C
Integral of sin(x) dx
-cos(x)+C
Integral of cos(x) dx
sin(x)+C
Integral of tan(x) dx
ln|sec(x)|+C or -ln|cos(x)|+C
Integral of cot(x) dx
ln|sin(x)|+C
Integral of sec(x) dx
ln|sec(x)+tan(x)|+C
Integral of csc(x) dx
-ln|csc(x)+cot(x)|+C or ln|csc(x)-cot(x)|+C
Integral of sec²(x) dx
tan(x)+C
Integral of sec(x)tan(x) dx
sec(x)+C
Integral of csc²(x) dx
-cot(x)+C
Integral of csc(x)cot(x) dx
-csc(x)+C
Integral of tan²(x) dx
tan(x)-x+C