Limit definition
lim (∆x→0) = [f(x+∆x) - f(x)]/[∆x]
Constant rule
d/dx (Constant) = 0
Power rule
d/dx (axⁿ) = naxⁿ⁻¹
Sum-difference rule
d/dx [f(x) + g(x)] = f'(x) + g'(x)
Product rule
d/dx [f(x)*g(x)] = f'(x)g(x) + f(x)g'(x)
Quotient rule
d/dx [f(x)/g(x)] = [f'(x)g(x) - f(x)g'(x)]/[g(x)²]
Chain rule
d/dx [f(g(x)] = f'(g(x))*g'(x)
Derivative of sin
d/dx sin(x) = cos(x)
Derivative of cos
d/dx cos(x) = -sin(x)
Derivative of tan
d/dx tan(x) = sec²(x)
Derivative of sec
d/dx sec(x) = sec(x)tan(x)
Derivative of cot
d/dx cot(x) = -csc²(x)
Derivative of csc
d/dx csc(x) = -csc(x)cot(x)
Natural log of x
d/dx ln x = 1/x
Natural log of u
d/dx ln u = u’/u
d/dx of sin^(-1)x
d/dx of cos^(-1)x
d/dx of tan^(-1)x
d/dx of sec^(-1)x
d/dx of csc^(-1)x
d/dx of cot^(-1)x
d/dx of f^-1(x)