Calc III - ultimate review

0.0(0)
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/78

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

79 Terms

1

sphere eqn

2

direction angles

v = <a, b, c>

a → α

3

scalar projection (b onto a)

*magnitude of b that falls over a

4

vector projection (b onto a)

*captures scalar projection as well as direction

5

limit of a vector

6

dot product

7

cross product

  • a x b = area of parallelogram

  • |a • (b x c)| = area of parallelepiped

8

vector eqn

9

parametric eqns (vector)

v = <a, b, c>

  • v: parallel to actual vector, defines direction

10

symmetric eqns (vector)

11

2-point vector eqn

r0 + v = r1

  • v: vector connecting points r0 & r1

12

scalar plane eqn

P0 = <x0, y0, z0>

n = <a, b, c>

<img src="https://knowt-user-attachments.s3.amazonaws.com/ae1efd95-9003-4ffe-895e-266d79acbf44.png" data-width="100%" data-align="center"><p>P<sub>0</sub> = &lt;x<sub>0</sub>, y<sub>0</sub>, z<sub>0</sub>&gt;</p><p>n = &lt;a, b, c&gt;</p>
13

linear plane eqn

d = -(ax0 + by0 + cz0)

14

ellipsoid

<img src="https://knowt-user-attachments.s3.amazonaws.com/dc8e5739-2988-449e-b183-28210c09b1a2.png" data-width="100%" data-align="center"><p></p>
15

cone

<img src="https://knowt-user-attachments.s3.amazonaws.com/c50643c1-444e-4d0a-9aef-a6d9145f8d61.png" data-width="100%" data-align="center"><p></p>
16

elliptic paraboloid

<img src="https://knowt-user-attachments.s3.amazonaws.com/f2a55be9-c8d8-47cc-b693-cc82b9b4da80.png" data-width="100%" data-align="center"><p></p>
17

hyperbolic of one sheet

<img src="https://knowt-user-attachments.s3.amazonaws.com/a464ba0d-2345-470e-b8bf-aa1b99d307a0.png" data-width="100%" data-align="center"><p></p>
18

hyperbolic paraboloid

<img src="https://knowt-user-attachments.s3.amazonaws.com/f31b6175-6b29-4169-891c-f5cbf7e94ee8.png" data-width="100%" data-align="center"><p></p>
19

hyperboloid of two sheets

<img src="https://knowt-user-attachments.s3.amazonaws.com/cbbb54e1-27fd-4b5a-a5f0-04add9ad6c4d.png" data-width="100%" data-align="center"><p></p>
20

unit tangent vector

21

derivative of a vector

22

derivative of cross & dot product

23

integral of a vector

24

arc length

<img src="https://knowt-user-attachments.s3.amazonaws.com/bac50ef0-1721-4eea-8453-dcb1b6d34010.png" data-width="100%" data-align="center"><p></p>
25

curvature

<img src="https://knowt-user-attachments.s3.amazonaws.com/93644056-a337-4a90-b854-c4d6f6b85c51.png" data-width="100%" data-align="center"><img src="https://knowt-user-attachments.s3.amazonaws.com/da6426ad-5e44-4b31-bdd4-cb25f6df9719.png" data-width="100%" data-align="center"><p></p>
26

unit normal

27

unit binormal

B(t) = T(t) x N(t)

28

acceleration (tangent & normal)

29

partial derivative

b = constant

30

derivative notation

31

Clairaut’s thm

If fxy & fyx are continuous on D

  • fxy(a, b) = fyx(a, b)

    • True for most functions

32

plane eqn

  • a = -A/C

  • b = -B/C

33

total differential

34

chain rule (multivariable)

intermediate variables: ???

35

implicit differentiation??? (multivariable)

implicit function theorem?

36

directional derivative

rate of change of a multivariable function along some unit vector u

  • u = <a, b>

<img src="https://knowt-user-attachments.s3.amazonaws.com/2df356d1-e1de-4414-917a-5183eddd6ced.png" data-width="100%" data-align="center"><img src="https://knowt-user-attachments.s3.amazonaws.com/f1b5d089-91da-4711-9491-1e07406ecf89.png" data-width="100%" data-align="center"><p>rate of change of a multivariable function along some unit vector u</p><ul><li><p>u = &lt;a, b&gt;</p></li></ul><p></p>
37

gradient vector

  • shows direction of fastest increase

38

tangent plane (symmetric eqns)

39

critical point (multivariable)

  1. fx and fy = 0

  2. fx or fy DNE

40

SDT

  • D > 0:

    • fxx(a, b) > 0

      • Local minimum

    • fxx(a, b) < 0

      • Local maximum

  • D < 0:

    • no max/min

41

EVT (multivariable)

if f is continuous on closed, bounded D:

  • Both an absolute max & min exist within D

42

lagrange multiplier

  1. Find all values of lambda satisfying:

    • ∇f(x0, y0, z0) = λ∇g(x0, y0, z0)

    • g(x, y, z) = k

  2. Evaluate f @ all points

  3. Greatest f is maximum, smallest is minimum

43

average value (multivariable)

44

double integral

45

general regions (double integral)

  • type 1: between 2 continuous functions of x

  • type 2: between 2 continuous functions of y

46

double integral (polar)

*similarity: r dθ = arc length → “area” dA = r dr dθ

47

lamina mass

48

COM (multivariable)

49

moment of inertia (Ix, Iy, I0)

I0 + Ix + Iy

50

radius of gyration

average distance from the axis of rotation (R)

  • R = sqrt(I/m)

    • If all mass was concentrated R distance from the axis, I = mR2 regardless of shape/distribution

51

surface area (multivariable)

52

triple integral

  • yields bound volume if f(x, y, z) = 1

<img src="https://knowt-user-attachments.s3.amazonaws.com/50b56a45-2547-41a5-9f41-b0fd5a418426.png" data-width="100%" data-align="center"><ul><li><p>yields bound volume if f(x, y, z) = 1</p></li></ul><p></p>
53

general regions (triple integral)

type 1:

  • between graphs of 2 continuous f(x, y) functions

  • region D projected from xy-plane

type 2:

  • between graphs of 2 continuous f(y, z) functions

  • region D projected from yz-plane

type 3:

  • between graphs of 2 continuous f(x, z) functions

  • region D projected from xz-plane

<p><u>type 1:</u> </p><ul><li><p>between graphs of 2 continuous f(x, y) functions</p></li><li><p>region D projected from xy-plane</p></li></ul><p><u>type 2: </u></p><ul><li><p>between graphs of 2 continuous f(y, z) functions</p></li><li><p>region D projected from yz-plane</p></li></ul><p><u>type 3: </u></p><ul><li><p>between graphs of 2 continuous f(x, z) functions</p></li><li><p>region D projected from xz-plane</p></li></ul><p></p>
54

moments of inertia (3 axes)

55

moments (3 axes)

x̄ = Myz/m

ȳ = Mxz/m

z̄ = Mxy/m

56

cylindrical coords

(θ, r, z)

57

spherical coords

(ρ, θ, Φ)

58

Jacobian

x = g(u, v)

y = h(u, v)

59

vector fields

assigns each point on the coordinate plane with a vector F(x, y) or F(x, y, z)

60

conservative vector field

F is conservative if some f exists where:

  • F = ∇f

61

line integral (standard)

62

line integral (x’(t))

63

line integral (short form)

  • P integration only considers value change over changes in x

  • Q integration only considers value change over changes in y

64

work done (line integral)

  • T = unit tangent on C

65

Fundamental theorem for line integrals

  • line integrals of conservative vector fields only require values of f @ C’s endpoints!

66

test for conservative vector field

F(x, y) = P(x, y)i + Q(x, y)j

  • ONLY true in a simple region

67

Green’s thm

  • true if P & Q have continuous partial derivatives on D

68

Area (region D around closed line integral)

69

curl

F = Pi + Qj + Rk

  • measures rotation in a vector field

70

curl(∇f)

  • implies conservative vector fields also have no curl

    • true if second-order partial derivatives are continuous

71

divergence

  • measures the rate at which vectors move away from a point

72

div curl

  • true if F has continuous second-order partial derivatives

73

second vector form of green’s thm

74

parametric equations of surface S

<img src="https://knowt-user-attachments.s3.amazonaws.com/e6f57752-8919-43cd-8ed7-1acddcaba631.png" data-width="100%" data-align="center"><p></p>
75

surface of revolution

76

surface area/ surface integral

  • can be used for COM or moments of inertia

77

vector surface integrals

78

Stokes’ thm

79

Divergence thm