1/5
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
one sample t interval for μ
-confidence level, define μ in context
-check for random, 10%, normality
-x̄ ± ts/√n
one sample t test for μ
-alpha, define μ in context, Ho: μ=#, Ha: >, ≠, < #, df: n-1,
-random, 10%, normality
-t=(x̄-μ)/(s/√n)
- p value=p(tdf><#)
-draw model (tdf)
2 sample t-interval for μ1-μ2
-μ1=…,μ2=…, CL
-10%, normality, random(for each independent sample)
-(x̄1-x̄2)±t√(s²/n)+(s²/n)
matched pairs t-interval
-μd…., d=_
-random, 10%, normality(for the differences)
-(x̄/d)±t(Sd/√nd)
matched pairs t-test
-μd.., d=_, alpha, df= n-1, Ho:μd=o, Ha:μd=><≠ 0
-random, 10%, normality
-t=(x̄d-μd)/(sd/√nd)
how to check normality
given population is normal, CLT, graph raw data