Convergence and Divergence Tests for Series

0.0(0)
studied byStudied by 0 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/10

flashcard set

Earn XP

Description and Tags

Flashcards summarizing key convergence and divergence tests for series.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

11 Terms

1
New cards
<p>Test for Divergence</p>

Test for Divergence

Diverges if limn→∞ an ≠ 0 or limn→∞ an does not exist; inconclusive if limn→∞ an = 0.

2
New cards
<p>Geometric Series</p>

Geometric Series

Converges if |r| < 1; diverges if |r| ≥ 1; sum is Σ∞ n=1 arn−1 = a / (1 - r).

3
New cards
<p>p-series</p>

p-series

Converges if p > 1; diverges if p ≤ 1.

4
New cards
<p>Integral Test</p>

Integral Test

Converges if ∫∞1 f(x)dx converges; diverges if ∫∞1 f(x)dx diverges, where f derived from an is continuous, positive, and decreasing.

5
New cards
<p>Comparison Test</p>

Comparison Test

If Σbn converges and an ≤ bn for all n ≥ 1, then Σan converges; if Σbn diverges and an ≥ bn for all n ≥ 1, then Σan diverges.

6
New cards
<p>Limit Comparison Test</p>

Limit Comparison Test

If limn→∞ an/bn = c > 0, then either both series converge or both diverge.

7
New cards
<p>Alternating Series</p>

Alternating Series

Converges if bn+1 ≤ bn for all n ≥ 1 and limn→∞ bn = 0.

8
New cards
<p>Absolutely Convergence</p>

Absolutely Convergence

If Σ|an| converges, then Σan converges.

9
New cards
<p>Conditionally Convergence</p>

Conditionally Convergence

If Σan converges but Σ|an| diverges.

10
New cards
<p>Ratio Test</p>

Ratio Test

If limn→∞ |an+1/an| = L, then the series is absolutely convergent if L < 1, divergent if L > 1 or ∞, inconclusive if L = 1.

11
New cards
<p>Root Test</p>

Root Test

If limn→∞ n√|an| = L, then the series is absolutely convergent if L < 1, divergent if L > 1 or ∞, inconclusive if L = 1.