Published February 16, 2024

Everything You Need to get a 5 on AP Physics 1: Algebra-based


Natasha Potter

MSU Alumni, Creative Advertising Major, Marketing Associate at Knowt 😃

No need to stress! This guide is here to hook you up with some seriously awesome strategies and killer tips for the AP Physics 1 exam. I'm gonna spill all the secrets and give you all the resources you need to know how to ace the AP Physics 1 exam and score that sweet 5! So, get ready to crush it like a pro with the best approach and top-notch AP Physics 1 exam tips out there. You've totally got this! Let's do this!

Free AP Physics 1: Algebra-based Resources

No need to stress if you're cramming for the AP Physics 1 exam last-minute – we've all been there! So, no worries, you totally got this! If you're looking for some guidance on how to prepare for the AP Physics 1 exam with limited time, we've got your back. Check out these super helpful tips on the best way to study for the AP Physics 1 exam from fellow students who've been in your shoes, along with these AP Physics 1 exam tips tailored for effective last-minute studying. Armed with these tools, you’ll learn how to pass the AP Physics 1: Algebra-based exam!

What Do I Need to Memorize for the AP Physics 1: Algebra-based exam?

The AP Physics 1 exam revolves around five major and exciting big ideas that you'll dive into:

  1. Big Idea: Systems – You'll explore the properties of objects and systems, such as their mass and charge. Get ready to understand how these properties play a crucial role in the world of physics.

  2. Big Idea: Fields – Fields in space hold the key to explaining interactions between objects. Prepare to delve into the fascinating realm of fields and their influence on the universe.

  3. Big Idea: Force Interactions – Forces are the stars of the show when it comes to describing interactions between objects. Get set to unravel the forces at play and how they shape the dynamics of the physical world.

  4. Big Idea: Change – Brace yourself for a journey into the world of system interactions and how they lead to change within those systems. Witness how various elements come together to bring about transformations.

  5. Big Idea: Conservation – Conservation laws take the spotlight, dictating the rules of interactions in the physics realm. Discover the principles that govern the preservation of certain quantities, making physics all the more intriguing.

So, gear up for a thrilling exploration of these big ideas, and get ready to rock that AP Physics 1 exam with a solid understanding of these fundamental concepts! You're in for a physics adventure like no other!

What is on the AP Physics 1: Algebra-based Exam?


Exam Weight 

Unit 1: Kinetics 


Unit 2: Dynamics


Unit 3: Circular Motion and Gravitation


Unit 4: Energy


Unit 5: Momentum


Unit 6: Simple Harmonic Motion 


Unit 7: Torque and Rotational Motion 


Unit Breakdown:

  1. Kinetics: You'll apply kinematic equations to solve linear motion scenarios, interpret graphs, deal with projectile motion, and conduct motion experiments. Get ready for an exciting physics adventure!

  2. Dynamics: In physics, we represent forces as vectors with magnitude and direction. Newton's laws help us predict behavior, solve problems involving force, mass, and acceleration, and identify force pairs. Free-body diagrams aid us in visualizing common forces, and we handle inclined planes and friction with ease. Distinguishing between open and closed systems and applying the concept of center of mass are essential skills in our physics adventure.

  3. Circular Motion And Gravitation: Gravity is a fundamental force that we can compare to the electric force. Newton's law of gravitation helps us calculate the gravitational force between two objects. Using F = mg, we determine the force on an object with mass m in a gravitational field of strength g. The formula g = GM/r^2 helps us calculate the gravitational field due to an object with mass m. We can approximate the gravitational field near an object's surface based on its mass and radius relative to Earth. Distinguishing between gravitational and inertial mass is essential. For circular motion, we use a_c = v^2/r to analyze situations accurately. Mastering these concepts enhances our understanding of gravity and its effects on motion.

  4. Energy: Define open and closed systems in terms of energy conservation. Predict changes in kinetic energy based on applied forces. Calculate work using force and displacement to determine changes in kinetic energy. Calculate potential energy and use it to find the total energy of an object or system. Predict changes in the total energy of a system due to changes in position, speed, or frictional interactions. Apply the principles of conservation of energy and the Work-Energy Theorem to determine changes in kinetic, potential, or internal energy within a system.

  5. Momentum: In the realm of momentum, we make predictions and calculations based on applied forces to determine changes in an object's momentum. Understanding the relationships between momentum changes, average force, impulse, and time of interaction helps us grasp the dynamics at play. By analyzing data, we gain insights into how momentum changes characterize an object. Crafting a data collection plan enables us to investigate the relationship between momentum changes and the average force exerted on an object over time. A force-time graph aids us in calculating momentum changes. We define open and closed systems in the context of momentum conservation, and through this, we can predict the behaviors of object systems during collisions. Distinguishing between elastic and inelastic collisions, we identify the conserved quantities in each case. Additionally, we can predict the velocity of the center of mass of a system when there is internal interaction but no external interference.

  6. Simple Harmonic Motion: Determine the factors that influence the motion of a simple harmonic oscillator and understand how its motion depends on those properties. Calculate various quantities related to pendulum and spring simple harmonic motion, such as force, displacement, acceleration, velocity, period of motion, frequency, spring constant, string length, and mass. Analyze data to establish relationships between given values and variables connected to objects in oscillatory motion. Predict changes in the energy of an object or system resulting from simple harmonic motion, particularly involving springs.

  7. Torque and Rotational Motion: Use rotational kinematic equations to solve problems related to rotational motion. Differentiate and relate rotational and circular motion. Describe rotational force using the rotational equivalent of Newton’s second law, employing torque. Understand the qualitative impact of mass distribution on rotational inertia without needing to memorize formulas. Calculate torques on a two-dimensional system in static equilibrium through representation or modeling. Predict rotational collision behavior using similar processes as linear collisions. Use the relationship between torque and angular momentum to foresee changes in angular velocity or momentum. Apply conservation of momentum to predict changes in a system when there is no net external torque.

AP Physics 1 Exam Format

Section and Percentage 

# of Questions 


Multiple choice: 50%

50 (Five are multi-select questions)

1 hr 30 mins 

Free Response: 50%


1 hr 30 mins 

What does the AP Physics 1 MCQ look like?

Unit and Practice 

Exam Weight 

  1. Modeling 


  1. Mathematical Routines


  1. Experimental Method 


  1. Data Analysis 


  1. Argumentation 


  1. Making Connections 


What does the AP Physics 1: Algebra-based FRQ look like?

Unit and Practice 

Exam Weight 

  1. Modeling 


  1. Mathematical Routines 


  1. Experimental Method 


  1. Data analysis 


  1. Argumentation 


  1. Making Connections 


When do AP Physics 1: Algebra-based scores come out?

The AP Physics 1 scores are set to come out mid-July. If you want to stay updated or check for any changes, you can refer to the official CollegeBoard Annual calendar. Keep an eye out, and good luck with your results!

Should I Self Study AP Physics 1: Algebra-based?

AP Physics 1: Algebra based is a difficult exam to take, and by utilizing these AP Physics 1 exam tips, tricks, and resources, you should understand how to study for the AP Physics 1 exam.  

Here's a condensed plan on how to study for the AP Physics 1 exam:

  1. Get familiar with the test format and topics by taking a diagnostic test or practice exams from review books. Prioritize topics you need to work on and make tips for the Physics 1 exam.

  2. Mark study dates on your calendar and allocate at least 30 minutes daily for review. Focus on challenging topics first.

  3. Brush up on difficult concepts using review notes and online lecture videos.

  4. Practice a lot of sample APÂź questions, use resources like for detailed feedback.

  5. Time yourself with a full-length exam to gauge progress and manage time effectively.

  6. Reflect on strengths and weaknesses, fine-tune your study plan accordingly.

  7. The day before the exam, relax, rest, and take care of yourself.

By following this plan and the AP Physics test tips, you'll be well-prepared for the AP Physics 1 exam and ready to shine!

Explaining the 2023 AP Physics 1: Algebra-based Scores

Let's analyze the data to answer the question: Is AP Physics Hard?

The score distributions for AP Physics 1 & 2 exams are as follows:

  • Physics 1: 39.8% of test-takers passed, with 4.6% earning a 5.

  • Physics 2: 61.4% of test-takers passed, with 9.5% earning a 5.

The average scores in 2016 were 2.33 for AP Physics 1 and 2.89 for AP Physics 2.

From the data, we can see that Physics 1 has a lower pass rate and a smaller percentage of students scoring a 5 compared to Physics 2. The average scores for both exams are relatively low, indicating that they may present some challenges to students.

Based on this data, it can be inferred that AP Physics 1 & 2 are considered challenging exams. However, it's important to remember that with the right preparation and study strategies, success is attainable.

The scores for AP Physics 1&2 in 2016 were among the lowest on any AP exam, indicating their challenging nature. However, comparing them to the previous AP Physics B scores suggests that the difficulty could be partly due to acclimating to the new exams. AP Physics 2 scores are higher, likely because students have more experience and mastery of concepts after taking AP Physics 1 or another introductory physics class. Planning to take both classes could be beneficial for those interested in learning college-level physics in high school. Even if you don't feel confident taking the AP Physics 1 exam, taking AP Physics 2 might help develop sufficient physics skills to attempt the AP Exam.

Blog image

AP Prep

5 Signs You’re Taking the Wrong AP Class

Starting an AP class feels like a big step towards your future goals. It's exciting to pick subjects you think will help you on your way. But, have you ever sat in class and wondered, "Is this really the right AP for me?" If so, you're not alone! In this article, we're going to chat about 5 signs that might mean you're in the wrong AP class. Don't worry, it's all about finding what works best for you, the right AP study guides to get you through and sometimes that means realizing you might need to make a change. So, grab a snack, get comfy, and let's talk about how to tell if an AP class is a ...

Blog image

AP Prep

7 Things You Should Know Before You Sign up for AP Exams

Taking an AP course is a big step for students who want to be challenged and earn the plus of getting college credit. The excitement of possibly getting college credit can be overwhelming, but before you decide to take the AP exam, there are some important things to keep in mind, such as knowing where to find the right resources and AP Study Guides to make sure you get a 5! Knowing a few things about what AP exams you should take and which to avoid is SO IMPORTANT for your success in your AP courses. In this guide, we’ll walk you through the 7 essential things you should know before you regi...

Blog image

AP Prep

Everything You Need to get a 5 on AP Calculus BC

In this article, we aim to delve into a range of highly effective techniques and valuable AP Calculus BC exam tips for the AP Calculus BC exam, enabling you to attain a remarkable score of 5. By thoroughly analyzing and implementing these strategies, along with leveraging appropriate resources, you'll be fully prepared to excel in the AP Calculus BC exam and confidently secure an outstanding grade. Free AP Calculus BC Resources No need to stress if you find yourself cramming for the last-minute AP Calculus BC exam; it's a situation we can all relate to! If you're seeking ways to learn how to p...

View more