1/12
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
Transverse wave
Vibrations perpendicular to direction of travel
Longitudinal
Vibrations parallel to direction of travel
Wave speed
v_0=f\lambda
Phase angle
\phi=\frac{2\pi x}{\lambda}
wavenumber
k=\frac{2\pi}{\lambda} \left(k\ne\right. spring constant)
displacement in y and x
y=A\sin(\omega t-\frac{2\pi}{\lambda}x)
(can sub in k)
Doppler effect: moving source
\lambda^{\prime}=\lambda_0\left(1-\frac{v_{s}}{v_0}\right)
\left(v_{s}\right. is velocity of source and v_0 is speed of propagation eg speed of light)
f^{\prime}=\frac{f_0}{\left(1-\frac{v_{s}}{v_0}\right)}
Doppler effect: moving observer
v^{\prime}=v_0+v_{obs}
f^{\prime}=\left(1+\frac{v_{obs}}{v_0}\right)f_0 (on eq sheet)
Nyquist frequency (on eq sheet)
the highest detectable frequency in the data:
N=\frac{1}{2\Delta t}
where \Delta t is the cadence (how often measurements are taken)
Frequency resolution
smallest detectable change in frequency
\delta f=\frac{1}{t}
where t is the observing time
superposition
A^{\prime}=2A\cos(-\frac{\phi}{2})
y=A^{\prime}\sin(kx-\omega t+\frac{\phi}{2})
beat frequency
f_{beat}=\frac12(f_1-f_2)
beat wavelength
\frac{1}{\lambda_{beat}}=\frac12(\frac{1}{\lambda_1}-\frac{1}{\lambda_2})