Sequence: An infinite succession of numbers that follow a pattern
- Usually denoted with a subscript using aₙ
- Usually the terms are generated by a formula, ex. aₙ=(n-1)/n beginning with n=1 is 0, 1/2, 2/3, etc.
Officially:
- “A sequence has a limit L if for any ε>0 there is an associated positive integer N such that |aₙ - L| < ε for all n ≥ N. If so, the sequence converges to L and we write lim (n → infinity) aₙ = L”
- If a sequence has no finite limit, it diverges.
\
Infinite Series
An infinite series is an expression of the form a₁ + a₂ + a₃… + aₖ + …. The numbers a₁, a₂, a₃, etc. are the terms of the series
- In other words, an infinite series is a sequence of terms where the terms are added up, there is a pattern to the order of the terms, and there are an infinite number of terms.
\
As n increases, the partial sum includes more and more terms of the series. So if aₙ approaches a limit as n approaches infinity, then this limit is likely to be the sum of all of the terms in the series, thus a convergence.
- If the sequence of partial sums converges to a limit S, then the series is said to converge and S is called the sum of the series.
- If the sequence of partial sums diverges (doesn’t have a limit), then the series is said to diverge which means that a divergent series has no sum.
\
Working with Geometric Series
Used in the form of (infinity)Σ(n=1) a*r^(n-1)
- These show up often on the AP exam: often asked to determine whether the series converges or diverges, and if it converges, to what limit.
- If |r|<1, the series converges
- If |r|>1, the series diverges
For example, the series (1/2)+(1/2^2)+(1/2^3) converges, while 2+2^2+2^3 diverges.
\
If a geometric series converges, you can figure its sum out by doing the following:
- Multiply the expression by r
- aₙ = a + ar + ar^2 + ar^3… + ar^(n-1) → raₙ = a + ar + ar^2 + ar^3… + ar^(n-1)
- Subtract the second expression from the first
- Factor out aₙ from the left side
- Divide through by (1-r)
\
If we want to find the sum of the first n terms of a geometric series, we use the following formula:

\
For an infinite geometric series, if it converges, lim (n→infinity) r^n = 0, and its sum is found this way:
S = (a)/(1-r)
\
The nth Term Test For Divergence
The nth term test means we find the limit of the series and see if we get zero or not
- If the limit = L (any number other than 0), the series diverges
- If the limit = 0, we need to choose a different test
\
Integral Test for Convergence
If f is positive, continuous, and decreasing for x≥1, and aₙ=f(n), then
Either both converge or both diverge.
- In other words, if you want to test convergence for a series with positive terms, evaluate the integral and see if it converges.
\
Harmonic Series and ***p-***Series
Harmonic Series: (1/n) pattern
- Might look as though it is converging, but it diverges
- The sums are not approaching a limit, so as the sequence of partial sus diverges, so does the sequence of partial sums for the harmonic series
\
p-Series
- A series of the form (1/n^p) converges if p>1 and diverges if 0<p<1
\
Comparison Tests for Convergence
- Let 0 ≤ aₙ ≤ bₙ for all n
- If the summation of bₙ from 1 to infinity converges, then the summation of aₙ from 1 to infinity converges
- If the summation of aₙ from 1 to infinity diverges, then the summation of bₙ from 1 to infinity diverges
- Essentially, if all of the terms of a series are less than those of a convergent series, then it too converges. If all of the terms of a series are greater than those of a divergent series, then it too diverges
\
Limit Comparison Test

Alternating Series Test for Convergence
- Used for terms that alternate between positive and negative
- The series using (-1)^(n+1) bₙ converges if the following conditions are all satisfied
- bₙ > 0 (which means that the terms must alternate in sign)
- bₙ > bₙ₊₁ for all n
- bₙ → 0 as n → infinity
\
Absolute Convergence Theorem: The series Σaₙ converges absolutely if the corresponding series
Σ|aₙ| converges
\
Ratio Test for Convergence

Determining Absolute or Conditional Convergence
- Sometimes, an alternating series will converge, but when we look at the absolute value of the terms, it doesn’t.
- An alternating series that is not absolutely convergent is called conditionally convergent
\
Alternating Series Error Bound
- When summing an alternating series with a finite number of terms, the sum will not be the same as the sum with an infinite number
- If we want to find the error, we need to evaluate | S-Sₙ |
- Can put a bound on the error: a number that the error is less than, which is simply the absolute value of the next term in the alternating series
- If summing the first 10 terms in an alternating series, the error will be less than the absolute value of the eleventh term
\
Finding Taylor Polynomial Approximations of Functions
We can approximate a function on an interval centered at x=a by using a Taylor series (if centered about x=0, it’s a Maclurin series).
In a Taylor polynomial, the terms are found from thee derivatives of f as follows:
- If f can be differentiated n times at a, then the nth Taylor polynomial about x=a is
- pₙx = f(a) + f’(a)(x-a) + (f’’(a)/2!)(x-a)^2+ (f’’’(a)/3!)(x-a)^3+… + (f^(n)(a)/n!)(x-a)^n(x-a)^n

Lagrange Error Bound
- The “error bound” of a Taylor polynomial, aka the Lagrange error

- If you are finding an nth degree Taylor polynomial, a good approximation to the error bound is the next nonzero term in a decreasing series.
\
Radius and Interval of Convergence of Power Series

- Going from n = 0 to n = infinity instead of n = 1 to n = infinity
- Radius of convergence: R.
- If the series converges only for x=0, the radius of convergence is 0
- If the series converges absolutely for all x, the radius is all x
- Set of all values of X (-R, R) is the interval of convergence
\
Representing Functions as Power Series
- We can use differentiation and integration of power series to find the power series of other functions
- Can approximate the integral using its Maclurin and approximate the solution using the aforementioned series
- Find a new Taylor series from a known Taylor series.
\