Unit 4: Contextual Applications of Differentiation

Interpreting the Derivative

  • The derivative tells us the slope of the line tangent to the graph- which tells us the slope of the line at a particular point
  • This means that they can tell us the change of a unit over time. This will make sense with straight line motion.

\

Straight Line Motion

  • We know that position is measured in meters
  • We know that velocity is measured in meters per second (m/s)
    • Therefore we can derive position to get the rate of change- ie. meters per second!
  • We know that acceleration is measured in meters per second squared (m/s^2)
    • So we can derive velocity to get the rate of change- ie. meters per second per second!
    • You can also take the second derivative of position to get acceleration
Position:x(t) (sometimes wrote as s(t))Meters
Velocity:x’(t) or v(t)Meters/Second
Acceleration:x”(t) or v’(t) or a(t)Meters/Second^2
  • Particles will speed up when the sign of velocity and acceleration match

  • The must both be negative or positive

  • For example, if a particle moves along a straight line with velocity function v(t) = 3t^2 - 4t + 2. Find the acceleration of the particle at time t=2?

    • Solution: The acceleration of the particle is the derivative of its velocity function. Thus, we take the derivative of v(t) with respect to t
    • a(t) = d/dt v(t) = 6t - 4
    • To find the acceleration at t=2, we substitute t=2 into the expression for a(t):
    • a(2) = 6(2) - 4 = 8

    \

Non-Motion Changes

The derivative can also tell us the change of something other than motion

  • For example, let’s say the volume of water in a pool is equal to V(t) = 8t^2 -32t +4
  • Where V is the volume in gallons and t is the time in hours
  • If we want to find the rate that the volume of water is increasing we take the derivative
    • dV/dt = 16t - 32 gallons per hour
    • At t=2 the volume isn’t changing (equation equals 0)
    • Therefore it is increasing for all values >0
  • Another example would be where temperature of a cup of coffee is given by the function x(t) = 70 + 50e^(-0.1t), where t is the time in minutes since the coffee was poured. And we need to find the rate of change of the temperature with respect to time at t=5 minutes.
    • d/dt of x(t) = -5e^(-0.1t)
    • Evaluating this derivative at t=$ minutes, we get:
    • x’(5) = -5e^(-0.1(5)) ≈ -2.27

\

Related Rates

  • We just saw how the derivative can tell us the change of something but we can also have problems where the change of one thing is related to another- Related Rates!

  • Let’s say that a pool of water is expanding at 16π square inches per second and we need to find the rate of the radius expanding when the radius is 4 inches

  • We know that we can find the radius using A = πr^2

  • Now let’s relate our rates!

    • dA/dt = 2πr(dr/dt)
    • Notice how we had to follow r with dr/dt, this is because the change in R doesn’t match the change in A (implicit differentiation)
    • Now we have the change of the area (dA/dt) and the change of the radius (dr/dt)
    • Now we can plug in and solve!
    • 16π = 2π(4)dr/dt
    • dr/dt = 2
    • The radius is changing at a rate of 2 inches per second
  • Let’s say a spherical balloon is being inflated at a rate of 10 cubic inches per second. How fast is the radius of the balloon increasing when the radius is 4 inches?

  • We know that the volume of a sphere is given by the formula V = (4/3)πr^3.

    • Differentiating both sides with respect to time t, we get:
    • dV/dt = 4πr^2 (dr/dt)
    • We are given that dV/dt = 10 cubic inches per second and r = 4 inches. Substituting these values, we get:
    • 10 = 4π(4^2)(dr/dt)
    • Simplifying, we get:
    • dr/dt = 10/(16π)
  • Therefore, the radius of the balloon is increasing at a rate of 10/(16π) inches per second when the radius is 4 inches.

  • To solve related rates problems in calculus, follow these steps:

    • Read the problem carefully and identify all given information.
    • Draw a diagram if possible.
    • Determine what needs to be found and assign a variable to it.
    • Write an equation that relates the variables involved.
    • Differentiate both sides of the equation with respect to time.
    • Substitute in the given values and solve for the unknown rate.
  • Remember to always include units in your final answer and to check that your answer makes sense in the context of the problem.

\

Linearization

  • Differentials are very small quantities that correspond to a change in a number. We use Δx to denote a differential.

    • They can approximate the value of a function!

  • Remember the limit definition of a derivative?

  • We just have to replace h with Δx and remove the limit!

    • We get that f(x + Δx) ≈ f(x) + f’(x)Δx
    • This is no longer equal to the derivative, but an approximation of it
    • In simple terms “the value of a function (at x plus a little bit) is equal to the value of the function (at x) plus the product of the derivative of the function (at x) plus a little bit”
  • Let’s say we needed a differential to approximate (3.98)^4

    • We have to let f(x) = x^4, x= 4, and Δx = -0.02
    • Now we have to find f’(x) which is 4x^3
    • Now plug into f(x + Δx) ≈ f(x) + f’(x)Δx
    • (x + Δx)^4 = x^4 + 4x^3Δx
    • When we plug in x= 4 and Δx= -0.02 we get 250.88
    • You can check this using your calculator!

\

L’Hospital’s Rule

  • If a limit gives you 0/0 or ∞/∞, then it is called “indeterminate” and you can use

  • L’Hospital’s Rule to interpret it!

    \

  • L’Hospital’s Rule says that we can take the derivative of the numerator and denominator and try again

  • Let’s say we have the limit of 5x^3 -4x^2 +1/7x^3 +2x - 6 as it approaches infinity

    • This equals ∞/∞ so we can take the derivative of the top and bottom
    • Then we get 15x^2 -8x/21x^2 +2
    • This is still ∞/∞ so we take the derivative again
    • Then we get 30x -8/42x which is still ∞/∞
    • We take the derivative to get 30/42 or 5/7 which is our answer!

\