<h3 collapsed="false" seolevelmigrated="true">Page 1</h3><h4 collapsed="false" seolevelmigrated="true">PROCESS OF PLANT BREEDING PART I</h4><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 2</h3><h4 collapsed="false" seolevelmigrated="true">DEFINING PLANT BREEDING</h4><ul><li><p><strong>Definition</strong>: Genetic improvement of plants for human benefit.</p></li><li><p><strong>Components</strong>:</p><ul><li><p><strong>Science, Art, and Business</strong>: Systematic improvement of plants using genetics.</p></li><li><p><strong>Disciplines Involved</strong>: Agronomy, genetics, statistics.</p></li><li><p><strong>Art of Selection</strong>: Importance of an eye for selecting traits, developing an intuitive feel for key characteristics.</p></li></ul></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 3</h3><h4 collapsed="false" seolevelmigrated="true">DOMESTICATION</h4><ul><li><p><strong>Definition</strong>: Evolution of wild plants into crop plants.</p></li><li><p><strong>Process</strong>: Involves natural mutations and hybridization.</p></li><li><p><strong>Historic Timeline</strong>: Domestication was initiated by early farmers from around 9,000 years ago to the 1700s.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 4</h3><h4 collapsed="false" seolevelmigrated="true">CENTERS OF ORIGIN/DIVERSITY</h4><ul><li><p><strong>Definition</strong>: Geographical areas where organisms developed distinctive properties.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 5</h3><h4 collapsed="false" seolevelmigrated="true">Crop Origins by Centers</h4><ul><li><p><strong>China/Far East</strong>: Soybean, rice, millet.</p></li><li><p><strong>Near East</strong>: Wheat, oat, rye.</p></li><li><p><strong>Africa</strong>: Millet, yam, coffee.</p></li><li><p><strong>S. America</strong>: Peanut, potato, tomato.</p></li><li><p><strong>Central America</strong>: Maize, bean, squash.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 6</h3><h4 collapsed="false" seolevelmigrated="true">GREGOR MENDEL (1822-1884)</h4><ul><li><p><strong>Title</strong>: Father of Modern Genetics.</p></li><li><p><strong>Contributions</strong>: Coined the term "trait" and observed gene behavior through crosses and progeny ratios.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 7</h3><h4 collapsed="false" seolevelmigrated="true">HOW GENES BEHAVE</h4><ol><li><p><strong>Gene Contribution</strong>: Male passes one gene; female passes one gene.</p></li><li><p><strong>Offspring Expression</strong>: Jointly determined by gene pair.</p></li><li><p><strong>Genetic Composition</strong>: Can be homozygous or heterozygous; dominant genes mask recessive traits, explaining the temporary disappearance of traits.</p></li><li><p><strong>Gene Identity</strong>: Each gene maintains its identity across generations—this predictability supports breeding methods.</p></li></ol><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 8</h3><h4 collapsed="false" seolevelmigrated="true">2 EXCEPTIONS</h4><ol><li><p>Traits inherited together due to linkage.</p></li><li><p>Quantitative traits exhibit less distinct expression than qualitative traits.</p></li></ol><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 9</h3><h4 collapsed="false" seolevelmigrated="true">POST-MENDEL DISCOVERY</h4><ul><li><p>Genes are found on chromosomes.</p></li><li><p>Chromosomes are composed of DNA and protein.</p></li><li><p>Hereditary units lie in DNA.</p></li><li><p>Development of hybrid crops, molecular markers, gene editing.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 10</h3><h4 collapsed="false" seolevelmigrated="true">NORMAN BOURLAG</h4><ul><li><p><strong>Title</strong>: Most famous plant breeder.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 11</h3><h4 collapsed="false" seolevelmigrated="true">CHARACTERISTICS OF A GOOD BREEDER</h4><ol><li><p><strong>Knowledge</strong>: Extensive understanding of chosen crop.</p></li><li><p><strong>Field Orientation</strong>: Hands-on experience in the field.</p></li><li><p><strong>Understanding Priorities</strong>: Knowledge of program priorities.</p></li><li><p><strong>Innovation</strong>: Ability to think creatively.</p></li><li><p><strong>Team Player</strong>: Collaborates effectively with others.</p></li><li><p><strong>Technical Background</strong>: Strong knowledge in relevant scientific areas.</p></li></ol><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 12</h3><h4 collapsed="false" seolevelmigrated="true">DISCIPLINES IN PLANT BREEDING</h4><ul><li><p><strong>Core Areas</strong>: Plant botany, biochemistry, genetics/entomology, biotechnology, agronomy/pathology, horticulture, statistics/physiology, computer science.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 13</h3><h4 collapsed="false" seolevelmigrated="true">IMPORTANCE OF TECHNICAL BACKGROUND</h4><ul><li><p><strong>Biological Influence</strong>: Understanding biology's impact on breeding.</p></li><li><p><strong>Economic Importance</strong>: Significance for agriculture and markets.</p></li><li><p><strong>Approaches</strong>: Various methods of plant breeding.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 14</h3><h4 collapsed="false" seolevelmigrated="true">SUMMARY</h4><ul><li><p><strong>Plant Breeding Overview</strong>: Genetically improving plants began with domestication.</p></li><li><p><strong>Traits</strong>: Controlled by genes, which follow specific rules with exceptions.</p></li><li><p><strong>Prominent Figure</strong>: Norman Bourlaug's legacy in plant breeding.</p></li><li><p><strong>Successful Characteristics</strong>: Attributes essential for effective breeding.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 15</h3><h4 collapsed="false" seolevelmigrated="true">PROCESS OF PLANT BREEDING PART II</h4><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 16</h3><h4 collapsed="false" seolevelmigrated="true">OVERVIEW OF BREEDING PROCESS</h4><ol><li><p><strong>Objective Determination</strong>: Establish the goals of breeding program.</p></li><li><p><strong>Genetic Variation Assembling</strong>: Gather existing genetic variations to meet goals.</p></li><li><p><strong>Development and Selection</strong>: Create and evaluate various plant progeny.</p></li><li><p><strong>Dissemination</strong>: Distribute new varieties to producers.</p></li></ol><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 17</h3><h4 collapsed="false" seolevelmigrated="true">BREEDING OBJECTIVES</h4><ul><li><p>Defined by traits and target environments:</p><ul><li><p><strong>Yield</strong>: Increase production to meet demand.</p></li><li><p><strong>Biotic Stress</strong>: Resistance to pests and diseases.</p></li><li><p><strong>Abiotic Stress</strong>: Tolerance to environmental extremes.</p></li><li><p><strong>Quality</strong>: Ensuring edible and marketable produce.</p></li></ul></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 18</h3><h4 collapsed="false" seolevelmigrated="true">ASSEMBLING GENETIC VARIATION</h4><ul><li><p><strong>Genetic Variation</strong>: Needed for selection; created through hybridization of genetically diverse parents.</p></li><li><p><strong>Breeding Population</strong>: Group of interbreeding individuals.</p></li><li><p><strong>Challenges</strong>: Some species, like bananas, have reproduction challenges; alternatives include using clones or induced mutations.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 19</h3><h4 collapsed="false" seolevelmigrated="true">DEVELOPING AND SELECTING PROGENY</h4><ul><li><p>Selection process in breeding affects which plants contribute to the next generation.</p></li><li><p>Initial high variation decreases as selection progresses.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 20</h3><h4 collapsed="false" seolevelmigrated="true">F2 SELECTION EXAMPLE</h4><ul><li><p>In a soybean program, 75,000 plants may yield 200 selected plants through rigorous testing.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 21</h3><h4 collapsed="false" seolevelmigrated="true">DISSEMINATING NEW CULTIVARS</h4><ul><li><p><strong>Seed Production</strong>: Growing seeds for future planting seasons, categorized as:</p><ul><li><p>Breeders Seed</p></li><li><p>Foundation Seed</p></li><li><p>Registered Seed</p></li><li><p>Certified Seed</p></li></ul></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 22</h3><h4 collapsed="false" seolevelmigrated="true">INTELLECTUAL PROPERTY IN BREEDING</h4><ul><li><p><strong>Plant Variety Protection (PVP)</strong>: Ensures new cultivars meet distinct, uniform, and stable criteria.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 23</h3><h4 collapsed="false" seolevelmigrated="true">PLANT PATENTING</h4><ul><li><p><strong>Types</strong>: Plant Patent, Novel Utility, Non-obvious standards are key.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 24</h3><h4 collapsed="false" seolevelmigrated="true">SUMMARY OF BREEDING PROCESS</h4><ul><li><p><strong>Core Steps</strong>: Define objectives, create genetic variation, select optimal traits, and release new cultivars.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 25</h3><h4 collapsed="false" seolevelmigrated="true">PROCESS OF PLANT BREEDING PART III</h4><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 26</h3><h4 collapsed="false" seolevelmigrated="true">GENETIC RESOURCES AND PRE-BREEDING</h4><ul><li><p><strong>Germplasm</strong>: Genetic material such as seeds or plant tissue.</p></li><li><p>Breeding populations often result in reduced genetic diversity without good germplasm.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 27</h3><h4 collapsed="false" seolevelmigrated="true">PLANT GENETIC RESOURCES</h4><ul><li><p>Sources for breeding diversity: Wild species, domesticated species, cultivars, landraces, exotic germplasm, and plant introductions.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 28</h3><h4 collapsed="false" seolevelmigrated="true">DEFINITIONS</h4><ul><li><p><strong>Plant Introduction</strong>: Importing superior varieties.</p></li><li><p><strong>Variety/Landrace</strong>: Naturally occurring subdivisions of a species.</p></li><li><p><strong>Cultivar</strong>: Cultivated variety resulting from human intervention.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 29</h3><h4 collapsed="false" seolevelmigrated="true">FUSARIUM WILT EXAMPLE</h4><ul><li><p><strong>Impact</strong>: Yield losses exceeding AUD $43 million.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 30</h3><h4 collapsed="false" seolevelmigrated="true">PURPOSE OF PLANT INTRODUCTIONS</h4><ul><li><p>Objectives may include:</p><ul><li><p>Introducing new species or varieties.</p></li><li><p>Crop improvement, pest, and disease resistance.</p></li><li><p>Scientific research and aesthetic enhancement.</p></li></ul></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 31</h3><h4 collapsed="false" seolevelmigrated="true">HISTORY OF PLANT INTRODUCTIONS</h4><ul><li><p><strong>Influential Figures</strong>: Early explorers settling the Americas.</p></li><li><p>Critical developments in crops like the potato.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 32</h3><h4 collapsed="false" seolevelmigrated="true">FURTHER INFLUENTIAL FIGURES</h4><ul><li><p><strong>Thomas Jefferson</strong> and contributions through US Navy and Morrill Act 1862.</p></li><li><p>USDA vision for useful plant additions.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 33</h3><h4 collapsed="false" seolevelmigrated="true">EXAMPLES OF PLANT EXPLORERS</h4><ul><li><p><strong>P.H. Dorsett</strong> and <strong>Bill Morse</strong>: Contributions in soybeans.</p></li><li><p><strong>Mac Stewart</strong>: Introduced cotton species.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 34</h3><h4 collapsed="false" seolevelmigrated="true">ADVANTAGES OF PLANT INTRODUCTIONS</h4><ul><li><p>Quick, economical crop improvement.</p></li><li><p>Immediate introduction of superior varieties.</p></li><li><p>Expands genetic base and disease protection.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 35</h3><h4 collapsed="false" seolevelmigrated="true">DISADVANTAGES OF PLANT INTRODUCTIONS</h4><ul><li><p>Risks of introducing diseases, pests, and invasive weeds; managed by quarantine protocols.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 36</h3><h4 collapsed="false" seolevelmigrated="true">ADAPTATION TYPES</h4><ul><li><p><strong>Primary Adaptation</strong>: Direct increases in suitability for commercialization.</p></li><li><p><strong>Secondary Adaptation</strong>: Selections or hybridizations to refine suitability.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 37</h3><h4 collapsed="false" seolevelmigrated="true">GERMPLASM COLLECTIONS</h4><ul><li><p>Managed by USDA's National Plant Germplasm System; includes a network of facilities and collections.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 38</h3><h4 collapsed="false" seolevelmigrated="true">FUSARIUM WILT IMPACT REITERATED</h4><ul><li><p>Yield losses exceed AUD $43 million.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 39</h3><h4 collapsed="false" seolevelmigrated="true">GENETIC DIVERSITY TACTICS</h4><ul><li><p>Acquire, screen, and select for disease resistance by integrating plant introductions.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 40</h3><h4 collapsed="false" seolevelmigrated="true">PRE-BREEDING</h4><ul><li><p><strong>Definition</strong>: Germplasm improvement before direct cultivar development, focusing on adaptation-related traits.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 41</h3><h4 collapsed="false" seolevelmigrated="true">BREEDING ORGANIZATIONS</h4><ul><li><p><strong>Role</strong>: Identify opportunities, manage funding, hire staff, and ensure long-term commitment.</p></li><li><p>Types: Private and Public breeding programs.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 42</h3><h4 collapsed="false" seolevelmigrated="true">THREE MAIN INVESTMENTS IN BREEDING</h4><ol><li><p><strong>Resources</strong>: Adequate germplasm and infrastructure.</p></li><li><p><strong>People</strong>: Breeders and interdisciplinary experts.</p></li><li><p><strong>Time</strong>: Long development timelines, varying by species.</p></li></ol><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 43</h3><h4 collapsed="false" seolevelmigrated="true">PUBLIC BREEDING PROGRAMS</h4><ul><li><p>USDA focus on multiple key species; land grant institutions concentrate on local priorities.</p></li><li><p>CGIAR centers established to address regional agricultural needs in collaboration with governmental support.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 44</h3><h4 collapsed="false" seolevelmigrated="true">CGIAR OVERVIEW</h4><ul><li><p><strong>Established</strong>: 1971 to promote sustainable agriculture through scientific research for poverty alleviation and food security.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 45</h3><h4 collapsed="false" seolevelmigrated="true">CGIAR CENTERS</h4><ul><li><p>13 specific centers focusing on notable crops (e.g., CIMMYT for maize and wheat).</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 46</h3><h4 collapsed="false" seolevelmigrated="true">SUMMARY</h4><ul><li><p>Importance of germplasm, investments in breeding programs, and understanding different breeding approaches.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 47</h3><h4 collapsed="false" seolevelmigrated="true">FISH REPRODUCTION AND BREEDING</h4><ul><li><p>AGRI3000-Agricultural Genetics Course, Fall 2024.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 48</h3><h4 collapsed="false" seolevelmigrated="true">FISH CLASSIFICATION</h4><ul><li><p>Domain: Eukaryota</p></li><li><p>Kingdom: Animalia</p></li><li><p>Phylum: Chordata</p></li><li><p>Subphylum: Vertebrata</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 49</h3><h4 collapsed="false" seolevelmigrated="true">FISH TYPES</h4><ul><li><p>Three categories:</p><ul><li><p><strong>Jawless fish</strong></p></li><li><p><strong>Cartilaginous fish</strong></p></li><li><p><strong>Bony fish</strong> (Ray-finned and Lobe-finned fish).</p></li></ul></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 50</h3><h4 collapsed="false" seolevelmigrated="true">EXAMPLES OF FISH</h4><ul><li><p>Jawless: Lamprey.</p></li><li><p>Cartilaginous: Lungfish.</p></li><li><p>Bony: Piranha, Lionfish.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 51</h3><h4 collapsed="false" seolevelmigrated="true">FISH REPRODUCTIVE MANAGEMENT</h4><ul><li><p><strong>Reproductive Organs</strong>: Testes and ovaries.</p></li><li><p><strong>Stages in Reproduction</strong>: Juvenile preparation regarding spermatogenesis in various fish.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 52</h3><h4 collapsed="false" seolevelmigrated="true">FISH REPRODUCTIVE STRATEGIES</h4><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 53</h3><h4 collapsed="false" seolevelmigrated="true">OVULIPARITY</h4><ul><li><p>Defined as external fertilization of unfertilized eggs; examples include goldfish and salmon.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 54</h3><h4 collapsed="false" seolevelmigrated="true">MORE ON OVULIPARITY</h4><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 55</h3><h4 collapsed="false" seolevelmigrated="true">OVIPARITY</h4><ul><li><p>Internal fertilization followed by shedding zygotes into water; over 97% of fish exhibit this method.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 56</h3><h4 collapsed="false" seolevelmigrated="true">OVOVIVIPARITY</h4><ul><li><p>Eggs develop inside the female post-internal fertilization without direct maternal nourishment.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 57</h3><h4 collapsed="false" seolevelmigrated="true">VIVIPARITY</h4><ul><li><p>Can be classified under histotrophic and hemotrophic types.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 58</h3><h4 collapsed="false" seolevelmigrated="true">HERMAPHRODITISM</h4><ul><li><p>Occurs when individuals possess both reproductive organs; can switch sex (e.g., clownfish).</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 59</h3><h4 collapsed="false" seolevelmigrated="true">SEXUAL PARASITISM</h4><ul><li><p>Unique to anglerfish; males are much smaller and dependent on females for survival.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 60</h3><h4 collapsed="false" seolevelmigrated="true">PARTHENOGENESIS</h4><ul><li><p>Asexual reproduction where embryos develop without fertilization (e.g., Amazon molly).</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 61</h3><h4 collapsed="false" seolevelmigrated="true">AQUACULTURE</h4><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 62</h3><h4 collapsed="false" seolevelmigrated="true">WHAT IS AQUACULTURE?</h4><ul><li><p>Rearing aquatic organisms under controlled conditions for purposes like food production, conservation, and research.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 63</h3><h4 collapsed="false" seolevelmigrated="true">AQUACULTURE TECHNIQUES</h4><ul><li><p><strong>Methods Include</strong>: Open net pens, cages, aquaponics.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 64</h3><h4 collapsed="false" seolevelmigrated="true">WORLD FISHERIES AND AQUACULTURE PRODUCTION</h4><ul><li><p>Trends in aquatic animal production over the years; capture fisheries versus aquaculture data.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 65</h3><h4 collapsed="false" seolevelmigrated="true">AQUATIC ANIMAL PRODUCTION STATS</h4><ul><li><p><strong>Production Figures</strong>: 94.4 million tonnes for 2022; aquaculture surpassing capture fisheries in farmed animal production for the first time.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 66</h3><h4 collapsed="false" seolevelmigrated="true">AQUACULTURE TECHNIQUES (CONT'D)</h4><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 67</h3><h4 collapsed="false" seolevelmigrated="true">SEX REVERSAL</h4><ul><li><p>A biological process whereby sexual fate is flipped, can be influenced by genetic or environmental factors.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 68</h3><h4 collapsed="false" seolevelmigrated="true">EFFECTS OF ENVIRONMENT ON SEX REVERSAL</h4><ul><li><p>Factors such as population density, water pH, and temperature can drastically affect sexual development.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 69</h3><h4 collapsed="false" seolevelmigrated="true">IMPORTANCE OF SEX CONTROL IN AQUACULTURE</h4><ul><li><p>Differing growth rates between sexes can influence economic value; producing a monosex population is often beneficial.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 70</h3><h4 collapsed="false" seolevelmigrated="true">SEX REVERSAL (REPEATED CONCEPT)</h4><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 71</h3><h4 collapsed="false" seolevelmigrated="true">HYBRID FISH</h4><ul><li><p>Crosses between channel and blue catfish yielding beneficial traits.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 72</h3><h4 collapsed="false" seolevelmigrated="true">CHANNEL CATFISH ATTRIBUTES</h4><ul><li><p>Known for easy spawning, environmentally friendly farming, nutritious meat, use in aquaponics, and culinary versatility.</p></li><li><p><strong>BLUE CATFISH</strong>: High demand for sport fishing, uniform growth rates, disease resistance, and ease of capture.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 73</h3><h4 collapsed="false" seolevelmigrated="true">HYBRID CATFISH ADVANTAGES</h4><ul><li><p>Faster growth rates, easier harvesting, improved feed conversion. Significant increases in production efficiency and yield compared to channel catfish.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 74</h3><h4 collapsed="false" seolevelmigrated="true">HYBRID CATFISH PRODUCTION HISTORY</h4><ul><li><p>First developed in the US, with techniques established by Harry Dupree in 1966.</p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 75</h3><h4 collapsed="false" seolevelmigrated="true">ADDITIONAL RESOURCES</h4><ul><li><p>Video link for further learning: <a target="_blank" rel="noopener noreferrer nofollow" class="link" href="https://www.youtube.com/watch?v=xxE8uzbBZys" download="true">YouTube Video</a></p></li></ul><div data-type="horizontalRule"><hr></div><h3 collapsed="false" seolevelmigrated="true">Page 76</h3><h4 collapsed="false" seolevelmigrated="true">STUDY GUIDE QUESTIONS</h4><ol><li><p>Describe three categories of fish with examples.</p></li><li><p>Summarize fish reproductive strategies: ovuliparity, oviparity, ovoviviparity.</p></li><li><p>Define hermaphroditism with an example.</p></li><li><p>Explain sexual parasitism in fish.</p></li><li><p>Define aquaculture and its importance.</p></li><li><p>Discuss sex reversal and its significance.</p></li><li><p>Compare characteristics of hybrid catfish with channel catfish.</p></li></ol><p>
Categories of Fish:
Jawless Fish: Example - Lamprey.
Cartilaginous Fish: Example - Lungfish.
Bony Fish: Example - Piranha, Lionfish.
Fish Reproductive Strategies:
Ovuliparity: External fertilization of eggs, e.g., goldfish.
Oviparity: Internal fertilization followed by shedding eggs, e.g., over 97% of fish exhibit this.
Ovoviviparity: Eggs develop inside the female without direct maternal nourishment, e.g., some sharks.
Hermaphroditism:
Definition: Occurs when individuals possess both reproductive organs; can change sex.
Example: Clownfish.
Sexual Parasitism:
Unique to anglerfish; males are much smaller and depend on females for survival.
Aquaculture Definition:
Rearing aquatic organisms under controlled conditions for food production, conservation, and research.
Importance: Provides a sustainable source of food and contributes to conservation efforts.
Sex Reversal Significance:
Influences growth rates and economic value in aquaculture; producing a monosex population can enhance production efficiency.
Hybrid Catfish vs. Channel Catfish:
Hybrid catfish have faster growth rates, improved feed conversion, and enhanced production efficiency compared to channel catfish.</p>
Definition: Genetic improvement of plants for human benefit, focusing on enhancing desirable traits such as yield, disease resistance, and environmental adaptability.
Components:
Science, Art, and Business: Plant breeding is a systematic approach that combines scientific research with creative selection practices, establishing a framework for commercial viability and sustainability.
Disciplines Involved: A range of fields including agronomy, genetics, statistics, plant pathology, and biochemistry contribute to the complexities of modern plant breeding.
Art of Selection: Successful plant breeders develop an intuitive understanding of traits and characteristics that predict performance in varying environments, requiring not only scientific knowledge but also field experience.
Definition: The evolutionary process where wild plants are transformed into domesticated crop plants, driven by human intervention and selection for favorable traits.
Process: This transformation includes natural mutations and hybridization, alongside the selective pressure exerted by early agricultural practices.
Historic Timeline: Domestication has a rich history that spans from ancient civilizations approximately 9,000 years ago to the modern era, influencing global agriculture.
Definition: Refers to geographical areas where specific plant species originated and developed unique traits through natural selection and human cultivation.
China/Far East: Major crops include soybean, rice, and millet, which have significantly shaped dietary patterns and agricultural practices in the region.
Near East: Key crops like wheat, oat, and rye emerged as fundamental staples supporting growing populations.
Africa: Early cultivation of crops including millet, yam, and coffee demonstrated the region’s agricultural diversifications.
South America: Notable crops such as peanut, potato, and tomato originated here, profoundly impacting global cuisine.
Central America: The domestication of maize, bean, and squash laid the foundation for civilizations in this region.
Title: Recognized as the Father of Modern Genetics.
Contributions: Mendel's work in pea plant genetics led to the foundational principles of heredity, enabling the understanding of how traits are passed from one generation to the next. He coined the term "trait" and established the laws of inheritance, including dominant and recessive alleles, through meticulous experimentation with plant breeding techniques.
Gene Contribution: Genetic transmission involves one gene from the male parent and one from the female parent, creating a genotype that influences the phenotype of the offspring.
Offspring Expression: Traits are expressed jointly based on the alleles inherited from each parent, leading to various phenotypic outcomes.
Genetic Composition: Organisms can be homozygous (identical alleles) or heterozygous (different alleles), which affects trait visibility and dominance.
Gene Identity: Each gene retains its identity across generations, fostering predictability in breeding methods and outcomes, ensuring that traits can be reliably selected.
Linkage: Traits that are inherited together due to proximity on the same chromosome can defy independent assortment principles.
Quantitative Traits: These traits display a range of expressions and are influenced by multiple genes, unlike discrete qualitative traits.
Discovery Summary: Post-Mendelian genetics revealed that genes are situated on chromosomes, composed of DNA and proteins. This laid the groundwork for modern plant breeding techniques, including the use of molecular markers and gene editing technologies, accelerating the development of hybrid crops.
Title: Known as the most influential plant breeder, credited with the Green Revolution.
Knowledge: A comprehensive understanding of chosen crops and an awareness of the latest scientific advancements in plant genetics and breeding.
Field Orientation: Practical, hands-on experience in various phases of plant breeding and cultivation.
Understanding Priorities: Ability to prioritize breeding goals in alignment with market demands and ecological considerations.
Innovation: Creative thinking is essential for developing new methodologies and overcoming breeding challenges.
Team Player: Collaboration with interdisciplinary teams, including scientists, farmers, and industry stakeholders, is crucial for successful breeding programs.
Technical Background: Strong knowledge in relevant scientific fields ensures informed decision-making and effective problem-solving in breeding practices.
Core Areas: Various knowledge domains including plant botany, biochemistry, genetics/entomology, biotechnology, agronomy/pathology, horticulture, statistics/physiology, and computer science interplay in innovative breeding programs.
Biological Influence: It is critical to understand the biological context and environmental factors influencing genetic traits.
Economic Importance: Plant breeding contributes to agricultural productivity and market viability.
Approaches: Emphasizes the diversity of breeding approaches from traditional to advanced techniques, including biotechnology practices and sustainable agriculture paradigms.
Overview: The journey of plant breeding starts with the domestication of crops and evolves through understanding genetics and selective breeding practices led by influential figures.
Traits and Genes: Traits are intricately controlled by genetic factors that adhere to specific inheritance rules while encompassing exceptions.
Prominent Figures: The legacy of Norman Borlaug emphasizes transformative impacts in plant breeding methodologies.
Successful Characteristics: Key traits encompass knowledge, field experience, collaborative skills, and innovative approaches essential for effective breeding.