AL

Untitled Flashcard Set

1. Basic Properties (Numbers & Operations)

Commutative Property

  • a+b=b+aa + b = b + aa+b=b+a or ab=baab = baab=ba

Associative Property

  • (a+b)+c=a+(b+c)(a + b) + c = a + (b + c)(a+b)+c=a+(b+c) or (ab)c=a(bc)(ab)c = a(bc)(ab)c=a(bc)

Distributive Property

  • a(b+c)=ab+aca(b + c) = ab + aca(b+c)=ab+ac

Identity Property

  • a+0=aa + 0 = aa+0=a or a⋅1=aa \cdot 1 = aa⋅1=a

Inverse Property

  • a+(−a)=0a + (-a) = 0a+(−a)=0 or a⋅1a=1a \cdot \frac{1}{a} = 1a⋅a1​=1 (for a≠0a \neq 0a=0)


2. Algebraic Properties (Equality & Operations)

Addition Property of Equality

  • If a=ba = ba=b, then a+c=b+ca + c = b + ca+c=b+c

Multiplication Property of Equality

  • If a=ba = ba=b, then ac=bcac = bcac=bc


3. Exponent Properties

Product Rule

  • xm⋅xn=xm+nx^m \cdot x^n = x^{m+n}xm⋅xn=xm+n

Quotient Rule

  • xmxn=xm−n\frac{x^m}{x^n} = x^{m-n}xnxm​=xm−n

Power Rule

  • (xm)n=xmn(x^m)^n = x^{mn}(xm)n=xmn

Power of a Product Rule

  • (ab)n=anbn(ab)^n = a^n b^n(ab)n=anbn

Power of a Quotient Rule

  • (ab)n=anbn\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}(ba​)n=bnan​

Zero Exponent Rule

  • a0=1a^0 = 1a0=1 (for a≠0a \neq 0a=0)

Negative Exponent Rule

  • a−n=1ana^{-n} = \frac{1}{a^n}a−n=an1​

Fractional Exponent Rule

  • am/n=amn=(an)ma^{m/n} = \sqrt[n]{a^m} = (\sqrt[n]{a})^mam/n=nam​=(na​)m


4. Logarithmic Properties

Definition of a Logarithm

  • log⁡a(b)=c  ⟺  ac=b\log_a(b) = c \iff a^c = bloga​(b)=c⟺ac=b

Log Product Rule

  • log⁡a(MN)=log⁡a(M)+log⁡a(N)\log_a(MN) = \log_a(M) + \log_a(N)loga​(MN)=loga​(M)+loga​(N)

Log Quotient Rule

  • log⁡a(MN)=log⁡a(M)−log⁡a(N)\log_a\left(\frac{M}{N}\right) = \log_a(M) - \log_a(N)loga​(NM​)=loga​(M)−loga​(N)

Log Power Rule

  • log⁡a(Mk)=k⋅log⁡a(M)\log_a(M^k) = k \cdot \log_a(M)loga​(Mk)=k⋅loga​(M)

Change of Base Formula

  • log⁡a(M)=log⁡b(M)log⁡b(a)\log_a(M) = \frac{\log_b(M)}{\log_b(a)}loga​(M)=logb​(a)logb​(M)​

Special Log Values / Identity

  • log⁡a(a)=1\log_a(a) = 1loga​(a)=1, log⁡a(1)=0\log_a(1) = 0loga​(1)=0