Formula: ( \frac{d}{dx} x^n = n \cdot x^{n-1} )
Formula: ( \frac{d}{dx} f(x) \cdot g(x) = f(x) \cdot g'(x) + g(x) \cdot f'(x) )
Formula: ( \frac{d}{dx} \frac{f(x)}{g(x)} = \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{(g(x))^2} )
Sine Function:
( y = \sin x )
( y' = \cos x )
Cosine Function:
( y = \cos x )
( y' = -\sin x )
Tangent Function:
( y = \tan x )
( y' = \sec^2 x )
Cosecant Function:
( y = \csc x )
( y' = -\csc x \cdot \cot x )
Secant Function:
( y = \sec x )
( y' = \sec x \cdot \tan x )
Cotangent Function:
( y = \cot x )
( y' = -\csc^2 x )
Exponential Function:
( y = e^x )
( y' = e^x )
Exponential with Base 5:
( y = 5^x )
( y' = \ln 5 \cdot 5^x )
Natural Logarithm:
( y = \ln x )
( y' = \frac{1}{x} )
Logarithm with Base ( a ):
( y = \log_a u )
( y' = \frac{1}{u \cdot \ln(a)} )
Inverse Sine:
( y = \sin^{-1}(u) )
( y' = \frac{1}{\sqrt{1-u^2}} )
Inverse Cosine:
( y = \cos^{-1}(u) )
( y' = -\frac{1}{\sqrt{1-u^2}} )
Inverse Tangent:
( y = \tan^{-1}(u) )
( y' = \frac{1}{1+u^2} )
Inverse Cosecant:
( y = \csc^{-1}(u) )
( y' = -\frac{1}{|u| \sqrt{u^2-1}} )
Inverse Secant:
( y = \sec^{-1}(u) )
( y' = \frac{1}{|u| \sqrt{u^2-1}} )
Inverse Cotangent:
( y = \cot^{-1}(u) )
( y' = -\frac{1}{1+u^2} )
Formula:
If ( y = f(g(x)) ), then ( y' = f'(g(x)) \cdot g'(x) )
Example:
For ( y = (5x + 7)^2 ):
( y' = 2(5x + 7)(5) = 10(5x + 7) = 50x + 70 )