Calculus Derivative Rules

Calculus Derivative Rules

Page 1

Power Rule

  • Formula: ( \frac{d}{dx} x^n = n \cdot x^{n-1} )

Product Rule

  • Formula: ( \frac{d}{dx} f(x) \cdot g(x) = f(x) \cdot g'(x) + g(x) \cdot f'(x) )

Quotient Rule

  • Formula: ( \frac{d}{dx} \frac{f(x)}{g(x)} = \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{(g(x))^2} )

Section 3.5 (p. 135)

Trigonometric Derivatives

  • Sine Function:

    • ( y = \sin x )

    • ( y' = \cos x )

  • Cosine Function:

    • ( y = \cos x )

    • ( y' = -\sin x )

  • Tangent Function:

    • ( y = \tan x )

    • ( y' = \sec^2 x )

  • Cosecant Function:

    • ( y = \csc x )

    • ( y' = -\csc x \cdot \cot x )

  • Secant Function:

    • ( y = \sec x )

    • ( y' = \sec x \cdot \tan x )

  • Cotangent Function:

    • ( y = \cot x )

    • ( y' = -\csc^2 x )

Section 3.9 (p. 164)

Exponential and Logarithmic Derivatives

  • Exponential Function:

    • ( y = e^x )

    • ( y' = e^x )

  • Exponential with Base 5:

    • ( y = 5^x )

    • ( y' = \ln 5 \cdot 5^x )

  • Natural Logarithm:

    • ( y = \ln x )

    • ( y' = \frac{1}{x} )

  • Logarithm with Base ( a ):

    • ( y = \log_a u )

    • ( y' = \frac{1}{u \cdot \ln(a)} )

Section 3.8 (p. 159)

Inverse Trigonometric Derivatives

  • Inverse Sine:

    • ( y = \sin^{-1}(u) )

    • ( y' = \frac{1}{\sqrt{1-u^2}} )

  • Inverse Cosine:

    • ( y = \cos^{-1}(u) )

    • ( y' = -\frac{1}{\sqrt{1-u^2}} )

  • Inverse Tangent:

    • ( y = \tan^{-1}(u) )

    • ( y' = \frac{1}{1+u^2} )

  • Inverse Cosecant:

    • ( y = \csc^{-1}(u) )

    • ( y' = -\frac{1}{|u| \sqrt{u^2-1}} )

  • Inverse Secant:

    • ( y = \sec^{-1}(u) )

    • ( y' = \frac{1}{|u| \sqrt{u^2-1}} )

  • Inverse Cotangent:

    • ( y = \cot^{-1}(u) )

    • ( y' = -\frac{1}{1+u^2} )

Section 3.6 (p. 142)

Chain Rule

  • Formula:

    • If ( y = f(g(x)) ), then ( y' = f'(g(x)) \cdot g'(x) )

  • Example:

    • For ( y = (5x + 7)^2 ):

      • ( y' = 2(5x + 7)(5) = 10(5x + 7) = 50x + 70 )