TB

General Solutions and Problem-Solving Strategies for Systems of Equations

  • General Solutions for Systems of Equations

    • When performing the same process repeatedly, the solution obtained is a subset of a possible general equation.

    • a, b, and d are known quantities (e.g., numbers, masses) that vary depending on the specific problem.

    • Two Equations, Two Unknowns:

    • For a system involving two unknowns (e.g., p and q), equations nine and ten represent the general solutions.

    • These general solutions allow immediate determination of p and q by plugging in the values of a, b, and d, eliminating the need for substitution.

    • These general solutions will be provided on the exam equation sheet.

    • Condition for Unique Solution:

    • A unique solution exists if the denominator of the general solution is non-zero.

    • For mass-related problems, masses are always positive and non-zero, generally guaranteeing a physical solution.

  • Problem-Solving Approach with General Solutions

    • The method involves arranging the system of equations with the first unknown in the first term and the second unknown in the second term.

    • By comparing terms with the general solution form, one can immediately identify the solution.

  • Three Equations, Three Unknowns

    • The concept extends to systems with three equations and three unknowns.

    • Geometrical Interpretation:

    • A three-equation, three-unknown system can be visualized as three planes.

    • The intersection of these three planes represents the unique physical prediction (e.g., unique acceleration and tension values).

    • For practical purposes, drawing these planes to find the intersection is not expected in an exam.

    • Application to Physics Problems:

    • In equations 44 to 46, a system of linear equations is rearranged into a specific form.

    • For example, if a is the first term and T1 (tension one) is the second, coefficients like B1 (top middle) might derive from a negative sign in the rearranged equation, leading to a $-1$ term.

  • Ramp Problem - Coordinate System Alignment

    • Initial Setup:

    • Consider a system with a mass on a ramp and a hanging mass connected by a string (similar to a flat table with a hanging mass, but with a ramp).

    • If standard coordinates (y up, x right) are used for the mass on the ramp, it moves in both x and y dimensions, significantly complicating the mathematics.

    • Simplified Approach:

    • To simplify, align the x-axis along the ramp and the y-axis perpendicular to the ramp.

    • This means forces will either be along the x or y axis relative to the ramp.

    • Gravity: Gravity always points straight down, so its components will need to be resolved along the inclined axes.

  • Forces in Ramp Problems

    • Tension: Tension in the string must overcome other forces (e.g., friction and a component of gravity) for the block to move up the ramp.

    • Gravity, Tension, and Friction: If gravity (specifically, its component down the ramp) is greater than the tension and friction, the block will accelerate down the ramp.

    • Two Possible Scenarios: The direction of motion dictates the direction of friction.

    • Friction's Direction: On a free body diagram, friction always points in the opposite direction to the motion (or impending motion).

  • Free Body Diagrams and Newton's Laws

    • Block on the Ramp (Block 1):

    • F_net_1 will have two non-zero components, one along the x-axis (parallel to the ramp) and one along the y-axis (perpendicular to the ramp), according to Newton's Second Law ( extbf{F}_{net} = m extbf{a} ).

    • Hanging Mass (Block 2):

    • F_net_2 will only have one non-zero component, in the y-direction (vertical), as it only moves up and down.

    • Resulting Equations: This leads to a system of three equations to be solved.

  • Key Information and Constraints

    • Knowns: Kinetic friction coefficient ( oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{µ}}}}})))}}})))}}}))))))))))))))))))))))))))))))))))))))))))))))))))))))))) ))) ))) }}}))), gravity components, and acceleration constraint .

    • Comparisons: Isolate terms with no unknowns to compare and find a, b, and d for use in the general solutions.

    • Condition for Unique Solution: For a unique solution, the sum of masses ( m1 + m2 ) must not equal zero.

  • Connecting Different Physical Scenarios

    • The general solutions are powerful because they can describe various physical situations.

    • Consistency Check: If you plug in heta = 0 (flat table) and oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{µ}}})))}}})))}}})))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) ))) ))) }}} = 0 $$ (no friction) into the ramp problem's general solutions, you obtain the exact same solutions as the flat table problem with no friction, demonstrating consistency.