knowt logo

4.2 Area

Sigma Notation:

What is Σ? Σ “sigma” stands for sum

2 + 4 + 6 + 8 + 10 = [ _(i = 1)Σ^5 ] 2i

Examples:

  1. [ ᵢ₌₁Σ^6 ] i = 1 + 2 + 3 + 4 + 5 + 6

  2. [ ᵢ₌₁Σ^6 ] i + 1 = 1 + 2 + 3 + 4 + 5 + 6

  3. [ ᵢ₌₃)Σ^7 ] i^2 = 3^2 + 4^2 + 5^2 + 6^2 + 7^2

  4. [ ᵢ₌₁)Σ^5 ] (1/√i) = 1/√1 + 1/√2 + 1/√3 + 1/√4 + 1/√5

  5. [ ᵢ₌₁Σⁿ ] 1/n • (k^2 + 1) = 1/n • (1^2 + 1) + 1/n •(2^2 + 1) … 1/n • (n^2 + 1)

Formulas:

  1. Constant: [ᵢ₌₁Σⁿ ] c = nc

  2. Just i: [ ᵢ₌₁Σⁿ ] i = [ n( n+1 )] / 2

  3. i^2: [ ᵢ₌₁Σⁿ ] i^2 = [ n( n+1 )(2n + 1)] / 6


Properties (a is some function within i):

  1. Constant: [ ᵢ₌₁Σⁿ ] k • a = k • [ ᵢ₌₁Σⁿ ] a

    1. Ex: [ ᵢ₌₁Σ^6 ] 3i = 3 • [ ᵢ₌₁Σ^6 ] i

  2. Sub/Difference: [ ᵢ₌₁Σⁿ ] a +- b = [ ᵢ₌₁Σⁿ ] a +- [ ᵢ₌₁Σⁿ ] b

    1. Ex: [ ᵢ₌₁Σ^4 ] (i + i^2) = [ ᵢ₌₁Σ^4 ] i +- [ ᵢ₌₁Σ^4 ] i^2

The Area of a Plane Region:

Area ~ [ ᵢ₌₁Σⁿ ] rectangles

= [ ᵢ₌₁Σⁿ ] height • width

= [ ᵢ₌₁Σⁿ ] f(c) • ∆x

—> f(ci) is the sampling position in subinterval “i” (red dashed line on graph)

—> ∆x is the width of the subinterval “i” (different rectangles on the graph’s width)


Use rectangles to approximate the area bound by:

f(x) = -x^2 + 20, x = 1, x = 4, y = 0

4 - 1 = 3 so use 3 rectangles of equal width (1).

3 Inscribed rectangles (lower sum):

Area ~ 1•16 + 1•11 + 1•4 = 31

R Circumscribed rectangles (upper sum):

Area ~ 1•19 + 1•16 + 1•11 = 46

Since 3 rectangles in somewhat inaccurate, try using 100 rectangles:

Width of each rectangle: ∆x = (4-1)/100 = 3/100

Right end of subinterval:

  1. C₁ = 1 + 3/100 • 1

  2. C₂ = 1 + 3/100 • 2

  3. C₃ = 1 + 3/100 • 3

  4. i = Ci = 1 + 3/100 • i

Area ~ [ ᵢ₌₁Σ^100 ] f(ci) * ∆x

= [ ᵢ₌₁Σ^100 ] [ -(1 + 3/100 • i)^2 + 20 ] • 3/100

n rectangles:

∆x = 3/n, ci = 1 + 3/n • i

Area = [ ᵢ₌₁Σⁿ ] (- (1 + 3/n • i)^2 + 20) • 3/n

Finding Area by the Limit Definition

f continuous and non-negative on [ a,b ]

A = _(n → ∞ )lim [ ᵢ₌₁Σⁿ ] f(c) • ∆x, as long as the width of the subintervals approaches 0

Definite Integral:

f must be continuous and non-negative

ₐ∫ᵇ f(x)dx = ₋(n → ∞ )lim [ ᵢ₌₁Σⁿ ] f(cᵢ) • ∆x

∆x = (b-a)/n

cᵢ = a + (b-a)/n • i

ₐ∫ᵇ f(x)dx = ₋(n → ∞ )lim [ ᵢ₌₁Σⁿ ] f( a + (b-a)/n • i) • (b-a)/n

MG

4.2 Area

Sigma Notation:

What is Σ? Σ “sigma” stands for sum

2 + 4 + 6 + 8 + 10 = [ _(i = 1)Σ^5 ] 2i

Examples:

  1. [ ᵢ₌₁Σ^6 ] i = 1 + 2 + 3 + 4 + 5 + 6

  2. [ ᵢ₌₁Σ^6 ] i + 1 = 1 + 2 + 3 + 4 + 5 + 6

  3. [ ᵢ₌₃)Σ^7 ] i^2 = 3^2 + 4^2 + 5^2 + 6^2 + 7^2

  4. [ ᵢ₌₁)Σ^5 ] (1/√i) = 1/√1 + 1/√2 + 1/√3 + 1/√4 + 1/√5

  5. [ ᵢ₌₁Σⁿ ] 1/n • (k^2 + 1) = 1/n • (1^2 + 1) + 1/n •(2^2 + 1) … 1/n • (n^2 + 1)

Formulas:

  1. Constant: [ᵢ₌₁Σⁿ ] c = nc

  2. Just i: [ ᵢ₌₁Σⁿ ] i = [ n( n+1 )] / 2

  3. i^2: [ ᵢ₌₁Σⁿ ] i^2 = [ n( n+1 )(2n + 1)] / 6


Properties (a is some function within i):

  1. Constant: [ ᵢ₌₁Σⁿ ] k • a = k • [ ᵢ₌₁Σⁿ ] a

    1. Ex: [ ᵢ₌₁Σ^6 ] 3i = 3 • [ ᵢ₌₁Σ^6 ] i

  2. Sub/Difference: [ ᵢ₌₁Σⁿ ] a +- b = [ ᵢ₌₁Σⁿ ] a +- [ ᵢ₌₁Σⁿ ] b

    1. Ex: [ ᵢ₌₁Σ^4 ] (i + i^2) = [ ᵢ₌₁Σ^4 ] i +- [ ᵢ₌₁Σ^4 ] i^2

The Area of a Plane Region:

Area ~ [ ᵢ₌₁Σⁿ ] rectangles

= [ ᵢ₌₁Σⁿ ] height • width

= [ ᵢ₌₁Σⁿ ] f(c) • ∆x

—> f(ci) is the sampling position in subinterval “i” (red dashed line on graph)

—> ∆x is the width of the subinterval “i” (different rectangles on the graph’s width)


Use rectangles to approximate the area bound by:

f(x) = -x^2 + 20, x = 1, x = 4, y = 0

4 - 1 = 3 so use 3 rectangles of equal width (1).

3 Inscribed rectangles (lower sum):

Area ~ 1•16 + 1•11 + 1•4 = 31

R Circumscribed rectangles (upper sum):

Area ~ 1•19 + 1•16 + 1•11 = 46

Since 3 rectangles in somewhat inaccurate, try using 100 rectangles:

Width of each rectangle: ∆x = (4-1)/100 = 3/100

Right end of subinterval:

  1. C₁ = 1 + 3/100 • 1

  2. C₂ = 1 + 3/100 • 2

  3. C₃ = 1 + 3/100 • 3

  4. i = Ci = 1 + 3/100 • i

Area ~ [ ᵢ₌₁Σ^100 ] f(ci) * ∆x

= [ ᵢ₌₁Σ^100 ] [ -(1 + 3/100 • i)^2 + 20 ] • 3/100

n rectangles:

∆x = 3/n, ci = 1 + 3/n • i

Area = [ ᵢ₌₁Σⁿ ] (- (1 + 3/n • i)^2 + 20) • 3/n

Finding Area by the Limit Definition

f continuous and non-negative on [ a,b ]

A = _(n → ∞ )lim [ ᵢ₌₁Σⁿ ] f(c) • ∆x, as long as the width of the subintervals approaches 0

Definite Integral:

f must be continuous and non-negative

ₐ∫ᵇ f(x)dx = ₋(n → ∞ )lim [ ᵢ₌₁Σⁿ ] f(cᵢ) • ∆x

∆x = (b-a)/n

cᵢ = a + (b-a)/n • i

ₐ∫ᵇ f(x)dx = ₋(n → ∞ )lim [ ᵢ₌₁Σⁿ ] f( a + (b-a)/n • i) • (b-a)/n

robot