### **3. Net Work Output**
The net work done by the Carnot engine:
\[
W_{\text{net}} = Q_{\text{hot}} - Q_{\text{cold}} = \eta \cdot Q_{\text{hot}}
\]
---
### **4. Adiabatic Process Relations**
For adiabatic steps (no heat exchange), the following hold:
- **Temperature-Volume Relation**:
\[
T V^{\gamma - 1} = \text{constant} \quad \Rightarrow \quad T_{\text{hot}} V_2^{\gamma - 1} = T_{\text{cold}} V_3^{\gamma - 1}
\]
- **Pressure-Volume Relation**:
\[
P V^\gamma = \text{constant}
\]
where \( \gamma = \frac{C_p}{C_v} \) (heat capacity ratio).
---
### **5. Coefficient of Performance (COP)**
- **For a Carnot Refrigerator**:
\[
\text{COP}_{\text{refrigerator}} = \frac{Q_{\text{cold}}}{W_{\text{net}}} = \frac{T_{\text{cold}}}{T_{\text{hot}} - T_{\text{cold}}}
\]
- **For a Carnot Heat Pump**:
\[
\text{COP}_{\text{heat pump}} = \frac{Q_{\text{hot}}}{W_{\text{net}}} = \frac{T_{\text{hot}}}{T_{\text{hot}} - T_{\text{cold}}}
\]
---
### **Key Relationships**
- Ratio of heats:
\[
\frac{Q_{\text{cold}}}{Q_{\text{hot}}} = \frac{T_{\text{cold}}}{T_{\text{hot}}}
\]
- Volume ratios in adiabatic steps:
\[
\frac{V_3}{V_2} = \left(\frac{T_{\text{hot}}}{T_{\text{cold}}}\right)^{\frac{1}{\gamma - 1}}, \quad \frac{V_4}{V_1} = \left(\frac{T_{\text{hot}}}{T_{\text{cold}}}\right)^{\frac{1}{\gamma - 1}}
\]
---
### **Summary**
- The Carnot cycle consists of **two isothermal** and **two adiabatic** processes.
- Efficiency depends **only** on the reservoir temperatures.
- Use \( \eta = 1 - \frac{T_{\text{cold}}}{T_{\text{hot}}} \) for maximum efficiency calculations.
- Heat transfers and work are linked via the logarithmic volume ratios and adiabatic relations.
These formulas are foundational for analyzing Carnot engines, refrigerators, and heat pumps in thermodynamics.