I_m = 3.28 \text{ ft}
10001 = I_m^3
\text{Vol} = 36 - 26.9895
PE = \text{Population Equivalent}
PE = \frac{\text{BOD loading (lbs/day)}}{\text{0.17 lbs BOD/day/person}}
Loading factor (unit # if not mentioned)
PE = \frac{\text{loading}}{\text{mg/L}}
PE = \text{Flow rate (MGD)} \times \text{BOD} \times 8.34
Example calculation:
PE = \frac{303.576 \text{ lbs/day}}{0.17 \text{ lbs BOD/day}} = 1785.74 \approx 1786
Another Example:
If the BOD concentration is 1019.18 mg/L and flow rate is 0.054 MGD:
\text{BOD loading} = 1019.18 \text{ mg/L} \times 0.054 \text{ MGD} \times 8.34 = 459.21 \text{ lbs BOD}
\text{Population loading} = \frac{459.21}{0.17} = 2701.23
Population loading calculation:
Flow rate = 1.55 MGD
\text{BOD loading} = \text{Concentration} \times Q = 210 \text{ mg/L} \times 1.55 \text{ MGD} \times 8.34 = 2714.67 \text{ lbs BOD}
\text{Population} = \frac{2714.67}{0.17} = 15968.65
PE = \frac{\text{BOD Loading}}{0.17 \text{ lbs BOD/day/person}}
Example:
PE = \frac{326.903}{0.17} \approx 1923
Another example:
PE = \frac{441.2}{0.17} = 2595.29
If BOD loading is given as Q \times 8.34 \times \text{BOD}
Key parameters:
Concentration
Flow rate (Q)
Food to microorganism ratio (F/M)
Volume
Waste Activated Sludge (WAS)
Effluent flow rate
Q = 500 \frac{m^3}{day}
\text{BOD loading} = \text{Concentration} \times Q
\text{BOD loading} = 1200 \times Q = 600
BOD = 50
F/M ratio:
E = 0.56 \frac{1}{day}
50 \frac{m^3}{day}
Mixed Liquor Suspended Solids (MLSS) = 30
Sludge Volume = 58.74 = 59 mL
Mixed Liquor Retention Time (MLRT) = volume / Q
Mean Cell Residence Time (MCRT) = \frac{\text{volume}}{\text{waste}} = 7 \text{ days}
MCRT = \frac{V}{Q_w}
3000 \frac{mg}{L}
TSS = 19.29
7500 \frac{mg}{L}
Area calculation:
Area = (20)^2 = 400
Q_{ave} = 14,000 \frac{m^3}{day}
Peak flow:
Q{peak} = 1.75 \times Q{ave} = 1.75 \times 14,000 \frac{m^3}{day} = 24,500 \frac{m^3}{day}
Average flow BOD = 190 mg/L
Peak flow BOD = 225 mg/L
Suspended Solids (SS) = 365 mg/L
Effluent BOD = 6 mg/L
Mass of solids calculations:
Flow = 10 \frac{m^3}{day}
Average flow:
Mass = 14,000
Average flow BOD removal:
\text{Removal} = (190-6) \times 14,000 \times (10^{-3}) = 2520 \frac{kg}{day}
\text{BOD removal} = \frac{BOD{in} - BOD{eff}}{BOD_{in}} = \frac{190-6}{190} = 0.9684 \approx 96.84 \%
Peak flow SS removal:
\text{Removal} = (365-30) \times (24,500) \times (10^{-3}) = 8207.5 \frac{kg}{day}
If including recirculation, follow equations. If not, do not include.
Hydraulic Loading Rate (HLR) calculation:
Given: Q = 808 {MGD}
Q_R = 0.66 \times Q = 0.66 \times 808 = 533.28
HLR = \frac{533.28 \text{ MGD}}{2.15 \text{ acres}} \times 1,000,000 = 248.28 \frac{GPD}{ft^2}
Organic Loading Rate (OLR) Calculation:
Given: 10,000 gallons per acre (gpa) + 2.45 MGD, BOD = 210 mg/L
\text{BOD loading} = \text{Concentration} \times \text{Flow rate} \times 8.34
\text{BOD loading} = 210 \frac{mg}{L} \times 2.45 \text{ MGD} \times 8.34 = 4290.93 \text{ lbs BOD}
Volume Calculation:
Volume = A*h
4290.93 \frac{lbs BOD}{day}
Volume = 25132.74 ft3
OLR = \frac{4290.93 \frac{lbs BOD}{day}}{25132.74 ft^3} \times 1000
OLR = 170.74 \frac{lbs BOD}{day * 1000 ft^3}
OLR is extracted. Using volume = area * depth. If OLR is given in lbs BOD/day / 1000 cu.ft