Chapter 4 - Macromolecules

  • Oxygen and sulfur both have six valence electrons and normally form two bonds.
  • Oxygen may be present in all macromolecules.
  • %%Sulfur is frequently present in proteins.%%
  • Nitrogen and phosphorus have five valence electrons apiece, and they normally form three bonds.
  • Nucleic acids and proteins contain nitrogen.
  • %%Phosphorus may be present in nucleic acids as well as certain lipids.%%
  • Hydrogen contains a single valence electron and just one bond.
  • Hydrogen may be present in all macromolecules.
  • In fact, hydrogen atoms are so common that they are frequently overlooked in molecular structures.
  • Carbon serves as the molecules' "backbone."
  • Carbon contains four valence electrons and may connect to a wide variety of other elements.
  • It has the ability to create single, double, and even triple bonds.
  • Carbon can also take the form of linear, branching, or ring-shaped formations.
  • Carbon can be present in all macromolecules.
  • Carbohydrates are sugar monomer polymers."
  • The structure and function of carbohydrate are determined by the type of sugars utilized to form it and how the sugars are connected.
  • Sugars can be linked in either linear or branched chains.
  • Carbohydrates can be utilized to store energy (as in starch or glycogen) as well as provide structural roles (such as in cellulose).
  • ^^The types of connections found between sugars in carbs that store energy differ from those found in carbohydrates that have a structural purpose.^^
  • Lipids are nonpolar polymers that have important roles in energy storage, cell membranes, and insulation." (As seen in the image attached below.)
  • Fatty acids are one of the building components of lipids.
  • Saturated fatty acids have the greatest amount of C–H single bonds, are solid at room temperature, and are often derived from animals.
  • Unsaturated fatty acids have at least one C=C double bond, are liquid at room temperature, and are often derived from plants.
  • The saturation level of a lipid determines how it operates in a cell.
  • Phospholipids play a critical role in cell membranes.
  • A glycerol molecule, two fatty acids, and a phosphate group make up their structure.
  • Because the fatty acids are nonpolar and the phosphate is polar, phospholipids are amphipathic, which means they have both hydrophobic and hydrophilic properties.
  • The term Nucleic acids refer to polymers of nucleotides and function as the carriers of genetic information.
  • Nucleotides will be discussed in more detail later in this chapter.”
  • Steroids are another kind of lipid.
  • Steroids are nonpolar, rather flat molecules.
  • Many steroids are created by altering the molecules of cholesterol.
  • Estradiol, testosterone, and cortisol are examples of steroids.
  • Proteins are amino acid polymers.
  • As illustrated in the image above, amino acids have an amino group, a carboxylic acid group, a hydrogen atom, and a side chain (R-group) connected to a central carbon.
  • The R-group is unique to each amino acid; it defines the amino acid's identity as well as whether it is nonpolar, polar, acidic, or basic.
  • Proteins have roles in enzyme catalysis, cell structure maintenance, cell signaling, cell recognition, and other processes.
  • Peptide bonds connect amino acids, as seen in the image attached above.
  • The resultant polypeptide chains have a carboxyl (COOH) terminus and an amino (NH2) terminus.
  • The main structure of the protein is determined by the order of the amino acids in the polypeptide chain.
  • Tertiary structure refers to the protein's three-dimensional folded form, which is frequently governed by hydrophobic/hydrophilic interactions between R-groups in the polypeptide.
  • The most stable tertiary structures will feature hydrophilic R-groups on the protein's surface (in touch with the aqueous environment of the cell's cytosol), whereas hydrophobic R-groups will be found in the protein's core (away from the watery cytosol).
  • Disulfide bridges between sulfur atoms may also be seen in tertiary structures.

\