A cell that has two sets of chromosomes is a diploid cell.
The chromosome number is given as “2n.” That means we have two copies of each chromosome.
If a cell has only one set of chromosomes, we call it a haploid cell. This kind of cell is given the symbol n.
The duplicate versions of each chromosome are called homologous chromosomes.
The homologous chromosomes that make up each pair are similar in size and shape and contain the same genes in the same locations
\
\
Genetics was discovered by the monk Gregor Mendel
Traits are influenced by one or more of your genes.
The position of a gene on a chromosome is called a locus.
Diploid organisms usually have two copies of each gene, one on each homologous chromosome.
Homologous chromosomes are two copies or versions of the same chromosome in a diploid cell or organism.
Humans have 23 pairs of homologous chromosomes.
Homologous chromosomes are the same size and shape, and contain the same genes. However, they can contain different versions(alleles) of those genes, and thus have different genetic sequences.
When an organism has two identical alleles for a given trait, the organism is homozygous.
If an organism has two different alleles for a given trait, the organism is heterozygous.
When discussing the physical appearance of an organism, we refer to its phenotype.
The genotype tells us which alleles the organism possesses.
The dominant allele receives a capital letter and the recessive allele receives a lowercase of the same letter.
Label each generation in the cross.
The three principles of genetics: the Law of Dominance, the Law of Segregation, and the Law of Independent Assortment.
\
Mendel crossed two true-breeding plants with contrasting traits: tall pea plants and short pea plants.
To his surprise, when Mendel mated these plants, the characteristics didn’t blend to produce plants of average height. Instead, all the offspring were tall.
A monohybrid cross occurs when two individuals are crossed and one gene is being studied. A simple way to represent a monohybrid cross is to set up a Punnett square. Punnett squares are used to predict the results of a cross.
\
\
Next, Mendel took the offspring and self-pollinated them.
Here’s a summary of the results: The ratio of phenotypes is 3:1 (three tall:one short). The ratio of genotypes is 1:2:1 (one TT:two Tt:one tt).
\
\
So far, we have looked at only one trait: tall versus short.
What happens when we study two traits at the same time? Each allele of the two traits will get segregated into two gametes, but how one trait gets split up into gametes has no bearing on how the other trait gets split up.
\
Different genes assort independently into gametes. A dihybrid cross is just like the monohybrid, but it studies how two genes are passed on to offspring.
\
\
\
\
\
Humans contain 23 pairs of chromosomes. Twenty- two of the pairs of chromosomes are called autosomes.
They code for many different traits.
The other pair contains the sex chromosomes. This pair determines the sex of an individual.
A female has two X chromosomes. A male has one X and one Y chromosome.
Some traits, such as color blindness and hemophilia, are carried on sex chromosomes.These are called sex-linked traits.
Most sex- linked traits are found on the X chromosome and are more properly referred to as “X-linked.”
Since males have one X and one Y chromosome, what happens if a male has an X-chromosome with the color blindness allele? Unfortunately, he’ll express the sex-linked trait, even if it is recessive.
However, if a female has only one color blind-X chromosome, she won’t express a recessive sex-linked trait. For her to express the trait, she has to inherit two color blind-X chromosomes.
A female with one color blind-X is called a carrier. Although she does not exhibit the trait, she can still pass it on to her children.
You can also use the Punnett square to figure out the results of sex-linked traits.
\
\
\
\
\
Meiosis is likely to produce sorts of variations than is mitosis, which therefore confers selective advantage on sexually reproducing organisms.
\
Meiosis actually involves two rounds of cell division: meiosis I and meiosis II.
Before meiosis begins, the diploid cell goes through interphase. Just as in mitosis, double-stranded chromosomes are formed during S phase.
Meiosis I
Prophase I
Metaphase I
Anaphase I
Telophase I
During telophase I, the nuclear membrane forms around each set of chromosomes.
Finally, the cells undergo cytokinesis, leaving us with two daughter cells.
Meiosis II
During prophase II, chromosomes once again condense and become visible.
In metaphase II, chromosomes move toward the metaphase plate. This time they line up single file, not as pairs.
During anaphase II, chromatids of each chromosome split at the centromere, and each chromatid is pulled to opposite ends of the cell.
At telophase II, a nuclear membrane forms around each set of chromosomes and a total of four haploid cells are produced.
\
Meiosis is also known as gametogenesis.
If sperm cells are produced, then meiosis is called spermatogenesis.
During spermatogenesis, four sperm cells are produced for each diploid cell.
If an egg cell or an ovum is produced, this process is called oogenesis.
Oogenesis produces only one ovum, not four. The other three cells, called polar bodies, get only a tiny amount of cytoplasm and eventually degenerate since the female wants to conserve as much cytoplasm as possible for the surviving gamete, the ovum.
\
Nondisjunction—chromosomes failed to separate properly during meiosis.
This error, which produces the wrong number of chromosomes in a cell, usually results in miscarriage or significant genetic defects.
Individuals with Down syndrome have three—instead of two—copies of the 21st chromosome.
Nondisjunction can occur in **anaphase I (**meaning chromosomes don’t separate when they should), or in anaphase II (meaning chromatids don’t separate).
Either one can lead to aneuploidy, or the presence of an abnormal number of chromosomes.
\
\