Stoichiometry, Mole Concept, Limiting Reagents, and Solution Chemistry

Stoichiometry: Introduction and Mole Concept

Introduction to Stoichiometry

  • Reaction Stoichiometry: Involves using balanced chemical equations to determine:

    • The required amount of each reagent (reactant).

    • The amount of each product formed.

  • Haber Process Example: $3 H2(g) + N2(g) \rightarrow 2 NH_3(g)$ illustrates a stoichiometric ratio of 3 molecules of hydrogen to 2 molecules of ammonia.

  • Principle: In a balanced equation, if one quantity is known, all other quantities (mass, moles, molecules, atoms) can be determined.

The Mole Concept

  • Necessity: Reactions cannot be carried out at the molecular scale due to extremely small masses.

    • Example: For $C2H5OH(l) + 3 O2(g) \rightarrow 2 CO2(g) + 3 H_2O(l)$

      • At molecular scale, $1$ molecule of $C2H5OH$ would weigh 7.65 \times 10^{-23} g.

      • $3$ molecules of $O_2$ would weigh 15.9 \times 10^{-23} g.

    • Molar Masses: $MM(C2H5OH) = 46.08 \text{ g/mol}$; $MM(O_2) = 32.00 \text{ g/mol}$.

    • Avogadro's Number (N_A): 6.02 \times 10^{23} molecules/mol.

    • Calculation of mass per molecule: For $C2H5OH$, (\frac{46.08 \text{ g}}{1 \text{ mol}}) \times (\frac{1 \text{ mol}}{6.02 \times 10^{23} \text{ molecules}}) = 7.65 \times 10^{-23} \text{ g/molecule}.

  • The Mole as a Unit: The mole (n) is used as a standard measure.

    • # Moles for Solids: n = \frac{\text{mass (g)}}{\text{Molar Mass (g/mol)}}.

    • # Moles for Solutions: Molarity ($C{\text{solute}}$ or $M$) is defined as C{\text{solute}} = \frac{\text{Number of moles of solute (mol)}}{\text{Volume of solution (L)}}.

      • Therefore, n = \text{Volume used (L)} \times C_{\text{solute}} \text{ (mol/L)}.

    • # Moles for Gases: Using the Ideal Gas Law, $PV = nRT$.

      • Therefore, n = \frac{P \text{ (kPa)} \times V \text{ (L)}}{R \text{ (kPa} \cdot \text{L/mol} \cdot \text{K)} \times T \text{ (K)}}.

      • Constants: $V$ = Volume (L or $dm^3$);

        • $R = 8.314 \text{ J/(K} \cdot \text{mol)} = 8.314 \text{ kPa} \cdot \text{L/(K} \cdot \text{mol)} = 0.0821 \text{ atm} \cdot \text{L/(K} \cdot \text{mol)} = 0.0831 \text{ bar} \cdot \text{L/(K} \cdot \text{mol)}$.

        • $T$ = Temperature (Kelvin).

        • $P$ = Pressure (atm, Pa, or Torr).

      • STP (Standard Temperature & Pressure): $T = 0^{\circ}C (273.15K)$, $P = 1 \text{ atm (101.325 kPa)}$.

    • # Moles for Liquids: Using density and molar mass.

      • \text{mass (g)} = \text{density (g/mL)} \times \text{volume (mL)}.

      • Therefore, n = \frac{\text{density (g/mL)} \times \text{volume (mL)}}{\text{Molar Mass (g/mol)}}.

Example 1: Mass Calculation

  • Problem: What mass of $I2$ is produced if 13.1 \text{ g} $KI$ is reacted with excess $KIO3$ and $HNO3$ according to the balanced equation: $5 KI(aq) + KIO3(aq) + 6 HNO3(aq) \rightarrow 6 KNO3(aq) + 3 I2(aq) + 3 H2O(l)$.

  • Given: Mass of $KI = 13.1 \text{ g}$; $MM(KI) = 166.0 \text{ g/mol}$; $MM(I_2) = 253.8 \text{ g/mol}$.

  • Stoichiometry Ratio: From the equation, 5 moles $KI$ produce 3 moles $I_2$.

    • Ratio: \frac{\text{n ($I_2$) produced}}{\text{n (KI) reacted}} = \frac{3 \text{ mol}}{5 \text{ mol}}.

  • Steps:

    1. Convert mass of KI to moles of KI:

      • n_{KI} = \frac{13.1 \text{ g}}{166.0 \text{ g/mol}} = 7.8916 \times 10^{-2} \text{ mol KI}.

    2. Convert moles of KI to moles of $I_2$ (using stoichiometry):

      • n{I2 \text{ produced}} = \frac{3}{5} \times n{KI \text{ reacted}} = \frac{3}{5} \times 7.8916 \times 10^{-2} \text{ mol} = 4.7349 \times 10^{-2} \text{ mol } I2.

    3. Convert moles of $I2$ to mass of $I2$:

      • m{I2} = n{I2 \text{ produced}} \times MM(I_2) = 4.7349 \times 10^{-2} \text{ mol} \times 253.8 \text{ g/mol} = 12.0 \text{ g}.

Example 2: Solution Stoichiometry and Gas Volume

  • Reaction: $Na2CO3(aq) + 2 HCl(aq) \rightarrow 2 NaCl(aq) + H2O(l) + CO2(g)$.

  • Given: $Na2CO3$: $m = 2.0 \text{ g}$, $MM = 105.99 \text{ g} \cdot \text{mol}^{-1}$, diluted in 20 \text{ mL} water.

    • $HCl$: Molarity $C_{HCl} = 1 \text{ mol} \cdot \text{L}^{-1}$.

1. Volume of HCl needed to neutralize sodium carbonate
  • a. Moles of $Na2CO3$: n{Na2CO_3} = \frac{2.0 \text{ g}}{105.99 \text{ g} \cdot \text{mol}^{-1}} = 0.019 \text{ mol}.

  • b. Moles of HCl needed (stoichiometry):

    • Ratio: \frac{n{HCl}}{n{Na2CO3}} = \frac{2}{1}.

    • n{HCl} = 2 \times n{Na2CO3} = 2 \times 0.019 \text{ mol} = 0.038 \text{ mol}.

  • c. Volume of HCl solution:

    • V{HCl} = \frac{n{HCl}}{C_{HCl}} = \frac{0.038 \text{ mol}}{1 \text{ mol} \cdot \text{L}^{-1}} = 0.038 \text{ L} = 38 \text{ mL}.

2. Concentration of NaCl obtained
  • a. Moles of NaCl (stoichiometry):

    • Ratio: \frac{n{NaCl}}{n{Na2CO3}} = \frac{2}{1}.

    • n{NaCl} = 2 \times n{Na2CO3} = 2 \times 0.019 \text{ mol} = 0.038 \text{ mol}.

  • b. Total volume of solution:

    • V{tot} = V{Na2CO3} + V_{HCl} = 20 \text{ mL} + 38 \text{ mL} = 58 \text{ mL} = 0.058 \text{ L}.

  • c. Concentration of NaCl:

    • C{NaCl} = \frac{n{NaCl}}{V_{tot}} = \frac{0.038 \text{ mol}}{0.058 \text{ L}} = 0.65 \text{ mol} \cdot \text{L}^{-1} = 0.65 \text{ M}.

3. Volume of CO2 released at STP
  • a. Moles of CO2 (stoichiometry):

    • Ratio: \frac{n{CO2}}{n{Na2CO_3}} = \frac{1}{1}.

    • n{CO2} = n{Na2CO_3} = 0.019 \text{ mol}.

  • b. Volume of CO2 at STP:

    • STP: $T = 273.15 \text{ K}$, $P = 1 \text{ atm}$.

    • Use Ideal Gas Law: $PV = nRT \Rightarrow V = \frac{nRT}{P}$.

    • V{CO2} = \frac{0.019 \text{ mol} \times 0.0821 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \times 273.15 \text{ K}}{1 \text{ atm}} = 0.426 \text{ L} = 426 \text{ mL}.

Limiting Reagents and Yields

Example 3: Multi-step Reaction Stoichiometry

  • Problem: How many moles of $PCl3$ will be prepared from 0.2743 moles $HCl$ and excess $MnO2$ and $P_4$?

  • Reactions:

    • a. $4 HCl(aq) + MnO2(s) \rightarrow MnCl2(aq) + 2 H2O(l) + Cl2(g)$

    • b. $P4(s) + 6 Cl2(g) \rightarrow 4 PCl_3(s)$

  • Intermediate: $Cl_2$ is produced in reaction (a) and consumed in reaction (b).

  • Stoichiometric Ratios:

    • From (a): \frac{n{Cl2}}{n_{HCl}} = \frac{1}{4}.

    • From (b): \frac{n{PCl3}}{n{Cl2}} = \frac{4}{6}.

  • Combine Ratios:

    • n{PCl3} = (\frac{4}{6}) \times n{Cl2} = (\frac{4}{6}) \times (\frac{1}{4}) \times n{HCl} = \frac{1}{6} \times n{HCl}.

  • Calculation:

    • n{PCl3} = \frac{1}{6} \times 0.2743 \text{ mol HCl} = 0.04572 \text{ mol } PCl_3.

Limiting Reagent (or Reactant) Problems

  • Principle: Unless specified as