AB

Carboxylic Acids & Derivatives – Key Vocabulary

Abundance & Industrial Significance of Carboxylic Acids

  • Found widely in natural products (amino-acids, fatty acids, metabolic intermediates).
  • Pharmaceutical/industrial uses: preservatives, solvents, polymer precursors.
  • Key industrial transformation: acetic acid \longrightarrow vinyl acetate (monomer for poly(vinyl acetate) adhesives & coatings).

IUPAC & Common Nomenclature Rules

  • Monocarboxylic acids: base name + suffix “oic acid.”
    • Example: \ce{CH3CH2CO2H} \rightarrow propanoic acid.
  • Dicarboxylic acids: base name + suffix “dioic acid.”
    • Example: \ce{HO2C(CH2)4CO2H} \rightarrow hexanedioic acid (adipic acid).
  • Accepted historical (common) names remain permissible (formic, acetic, benzoic, succinic, etc.).

Physical Properties & Acid–Base Chemistry

  • Two hydrogen-bond donors/acceptors \Rightarrow relatively high b.p. & water-solubility (up to ~4–5 carbons).
  • Deprotonation with strong base (e.g. \ce{NaOH}) gives a carboxylate salt: \ce{RCO2H + NaOH -> RCO2^- Na^+ + H2O}.
    • Naming: replace “ic acid” with “ate.” (propanoate, benzoate, etc.)
  • Typical acidity: \text{p}K_a \approx 4 – 5 (≈10\^5 times stronger than alcohols).
    • Reason: conjugate base is resonance-stabilized [(two equal C–O bond lengths, e⁻ delocalization)].
  • Henderson–Hasselbalch: \mathrm{pH}=\mathrm{p}Ka+\log\frac{[\text{RCO}2^-]}{[\text{RCO}_2H]}.
    • At physiological pH (7.4) \Rightarrow log term ≈ 3.4 \Rightarrow >99.9 % exists as carboxylate.
  • Inductive effects: Electron-withdrawing groups (EWGs) lower \text{p}Ka. • Magnitude falls off with distance ((\alpha > \beta > \gamma)-carbon). • Example: \ce{ClCH2CO2H} (chloroacetic acid, \text{p}Ka = 2.9) more acidic than acetic acid (4.76).

Laboratory Preparations of Carboxylic Acids

  • Nitrile Hydrolysis: \ce{RCN + 2H2O + H^+ \xrightarrow[]{\Delta} RCO2H + NH4^+} (acidic) or \ce{RCN + OH^- \xrightarrow[]{\Delta} RCO2^- + NH3} (basic).
  • Grignard Carboxylation: \ce{RMgBr + CO2 \xrightarrow[]{Et2O}\ RCO2^- \xrightarrow[]{H3O^+} RCO2H}.

Reduction of Carboxylic Acids

  • LiAlH4 or BH3·THF \Rightarrow primary alcohols (BH3 is selective in presence of other carbonyls).
    \ce{RCO2H \xrightarrow[]{1) LiAlH4\;2) H2O} RCH2OH}.

Overview & Nomenclature of Carboxylic Acid Derivatives (Same Oxidation State)

  • Acid halide: replace “ic acid” with “yl halide.” (acetyl chloride).
  • Acid anhydride: replace “ic acid” with “anhydride.” (acetic anhydride).
  • Ester: name alkyl of alcohol + acid part “ate.” (ethyl acetate).
  • Amide: replace “ic/oic acid” with “amide.” (acetamide).
  • Nitrile: replace “ic acid” with “nitrile.” (acetonitrile).

Reactivity Principles of Derivatives

  • Relative reactivity toward nucleophilic acyl substitution:
    \text{Acid halide} > \text{Acid anhydride} > \text{Ester} \approx \text{Carboxylic acid} > \text{Amide} (driven by leaving-group ability & resonance).
  • Amide C–N shows partial (\pi)-character \Rightarrow restricted rotation, higher barrier (≈15–20 kcal·mol⁻¹).
  • Generic mechanism:
    1. Nucleophilic attack on carbonyl \rightarrow tetrahedral intermediate.
    2. Re-form C=O; expel leaving group (avoid H⁻/C⁻ as leaving groups).
    3. Several proton transfers fine-tune charges (context-dependent).
      • Guideline: never create a strong base in strongly acidic medium, nor a strong acid in basic medium.

Acid Chlorides – Preparation & Reactions

  • Formation: \ce{RCO2H + SOCl2 -> RCOCl + SO2 + HCl} (chlorination).
  • Hydrolysis: \ce{RCOCl + H2O -> RCO2H + HCl}.
  • Alcoholysis (esterification): \ce{RCOCl + ROH \xrightarrow[]{pyridine} RCO2R + HCl}.
  • Aminolysis: \ce{RCOCl + 2NH3 -> RCONH2 + NH4Cl} (2 equiv NH3).
  • Reduction:
    LiAlH4 (excess) \rightarrow \ce{RCH2OH} (two hydride deliveries).
    LiAlH(OtBu)3 (selective) \rightarrow aldehyde.
  • Organometallic additions:
    Grignard (2 equiv) \rightarrow tertiary alcohol (adds twice).
    Gilman reagent \ce{R'2CuLi} (1 equiv) \rightarrow ketone (single substitution).

Acid Anhydrides

  • Preparation:
    • Self-condensation of acetic acid at high T \rightarrow acetic anhydride + H2O.
    • \ce{RCOCl + RCO2^- Na^+ -> (RCO)2O + NaCl}.
  • Reactions parallel those of acid chlorides; leaving group is \ce{RCO2^-} instead of \ce{Cl^-}.

Ester Formation & Reactions

  • Alkylation of Carboxylate: \ce{RCO2^- + R'X -> RCO2R'} (SN2; requires strong base e.g. \ce{NaH} then alkyl halide).
  • Fischer Esterification (acid-catalyzed, reversible):
    \ce{RCO2H + R'OH \rightleftharpoons[H2O][H^+] RCO2R' + H2O}.
    • Driven forward by excess alcohol or removal of water (Dean–Stark).
  • Alternative: acid chloride + alcohol (+ pyridine) \rightarrow ester (irreversible).
  • Hydrolysis:
    • Acidic: reverse of Fischer.
    • Basic (saponification): \ce{RCO2R' + OH^- -> RCO2^- + R'OH}; product carboxylate must be acid-work-up to acid.
  • Reduction:
    LiAlH4 \rightarrow two-step to primary alcohol.
    DIBAH (\approx -78\,^{\circ}!\mathrm{C}) \rightarrow aldehyde (one hydride).
  • Grignard (2 equiv) \rightarrow tertiary alcohol (analogous to acid chloride case).

Amide Chemistry

  • Synthesis: best via acid chloride + amine (or ammonia) because direct coupling with carboxylic acid is sluggish (requires \ge 200 °C).
  • Hydrolysis (harsh):
    • Acidic (6 M HCl, heat): \ce{RCONH2 -> RCO2H + NH4^+}.
    • Basic (NaOH, heat): \ce{RCONH2 -> RCO2^- + NH3}.
  • Reduction (excess LiAlH4) \rightarrow amine \ce{RCH2NH2} (C=O completely removed).

Nitrile Chemistry

  • Preparations:
    • \ce{RBr + NaCN -> RCN + NaBr} (SN2).
    • Dehydration of amide: \ce{RCONH2 + P2O5 -> RCN + H2O}.
  • Hydrolysis (acidic or basic) \rightarrow carboxylic acid (via amide).
  • Grignard Addition + work-up \rightarrow ketone:
    \ce{RCN + R'MgBr -> RC(=N^-MgBr)R' \xrightarrow[]{H3O^+} RCOR'}.
  • Reduction (LiAlH4) \rightarrow primary amine \ce{RCH2NH2}.

Functional-Group Interconversion & Synthetic Planning

  • Flowchart concept: acid \leftrightarrow chloride \leftrightarrow anhydride \leftrightarrow ester \leftrightarrow amide \leftrightarrow nitrile.
    • Upward moves (toward more reactive) require activating reagents (e.g. \ce{SOCl2}).
    • Downward moves (to less-reactive) accomplished via nucleophilic acyl substitution.
  • When building C–C bonds, choose a protocol that positions the new carbon skeleton adjacent to the correct functional group (e.g., Grignard on acid chloride for tertiary alcohol vs. Grignard on nitrile for ketone).

Spectroscopic Identification

  • IR: carbonyl stretch 1650 – 1850\;\text{cm}^{-1}.
    • Exact frequency diagnostic:
    – Acid chloride: \sim 1800\,\text{cm}^{-1}.
    – Anhydride (two bands): 1820 & 1760.
    – Ester: \sim 1740.
    – Carboxylic acid: \sim 1710 (+ broad O-H 2500–3500).
    – Amide: \sim 1660 – 1690.
    • Conjugation drops \nu_{C=O} by ≈20–30 cm⁻¹.
  • ^{13}\text{C} NMR:
    • Carbonyl carbons of derivatives: 160 – 185\;\text{ppm}.
    • Nitrile carbon: 115 – 130\;\text{ppm} (sp-hybrid).
  • ^{1}\text{H} NMR: CO2H proton highly deshielded \approx 12\;\text{ppm}.