Carboxylic Acids & Derivatives – Key Vocabulary
Abundance & Industrial Significance of Carboxylic Acids
- Found widely in natural products (amino-acids, fatty acids, metabolic intermediates).
- Pharmaceutical/industrial uses: preservatives, solvents, polymer precursors.
- Key industrial transformation: acetic acid \longrightarrow vinyl acetate (monomer for poly(vinyl acetate) adhesives & coatings).
IUPAC & Common Nomenclature Rules
- Monocarboxylic acids: base name + suffix “oic acid.”
• Example: \ce{CH3CH2CO2H} \rightarrow propanoic acid. - Dicarboxylic acids: base name + suffix “dioic acid.”
• Example: \ce{HO2C(CH2)4CO2H} \rightarrow hexanedioic acid (adipic acid). - Accepted historical (common) names remain permissible (formic, acetic, benzoic, succinic, etc.).
Physical Properties & Acid–Base Chemistry
- Two hydrogen-bond donors/acceptors \Rightarrow relatively high b.p. & water-solubility (up to ~4–5 carbons).
- Deprotonation with strong base (e.g. \ce{NaOH}) gives a carboxylate salt: \ce{RCO2H + NaOH -> RCO2^- Na^+ + H2O}.
• Naming: replace “ic acid” with “ate.” (propanoate, benzoate, etc.) - Typical acidity: \text{p}K_a \approx 4 – 5 (≈10\^5 times stronger than alcohols).
• Reason: conjugate base is resonance-stabilized [(two equal C–O bond lengths, e⁻ delocalization)]. - Henderson–Hasselbalch: \mathrm{pH}=\mathrm{p}Ka+\log\frac{[\text{RCO}2^-]}{[\text{RCO}_2H]}.
• At physiological pH (7.4) \Rightarrow log term ≈ 3.4 \Rightarrow >99.9 % exists as carboxylate. - Inductive effects: Electron-withdrawing groups (EWGs) lower \text{p}Ka.
• Magnitude falls off with distance ((\alpha > \beta > \gamma)-carbon).
• Example: \ce{ClCH2CO2H} (chloroacetic acid, \text{p}Ka = 2.9) more acidic than acetic acid (4.76).
Laboratory Preparations of Carboxylic Acids
- Nitrile Hydrolysis: \ce{RCN + 2H2O + H^+ \xrightarrow[]{\Delta} RCO2H + NH4^+} (acidic) or \ce{RCN + OH^- \xrightarrow[]{\Delta} RCO2^- + NH3} (basic).
- Grignard Carboxylation: \ce{RMgBr + CO2 \xrightarrow[]{Et2O}\ RCO2^- \xrightarrow[]{H3O^+} RCO2H}.
Reduction of Carboxylic Acids
- LiAlH4 or BH3·THF \Rightarrow primary alcohols (BH3 is selective in presence of other carbonyls).
\ce{RCO2H \xrightarrow[]{1) LiAlH4\;2) H2O} RCH2OH}.
Overview & Nomenclature of Carboxylic Acid Derivatives (Same Oxidation State)
- Acid halide: replace “ic acid” with “yl halide.” (acetyl chloride).
- Acid anhydride: replace “ic acid” with “anhydride.” (acetic anhydride).
- Ester: name alkyl of alcohol + acid part “ate.” (ethyl acetate).
- Amide: replace “ic/oic acid” with “amide.” (acetamide).
- Nitrile: replace “ic acid” with “nitrile.” (acetonitrile).
Reactivity Principles of Derivatives
- Relative reactivity toward nucleophilic acyl substitution:
\text{Acid halide} > \text{Acid anhydride} > \text{Ester} \approx \text{Carboxylic acid} > \text{Amide} (driven by leaving-group ability & resonance). - Amide C–N shows partial (\pi)-character \Rightarrow restricted rotation, higher barrier (≈15–20 kcal·mol⁻¹).
- Generic mechanism:
- Nucleophilic attack on carbonyl \rightarrow tetrahedral intermediate.
- Re-form C=O; expel leaving group (avoid H⁻/C⁻ as leaving groups).
- Several proton transfers fine-tune charges (context-dependent).
• Guideline: never create a strong base in strongly acidic medium, nor a strong acid in basic medium.
Acid Chlorides – Preparation & Reactions
- Formation: \ce{RCO2H + SOCl2 -> RCOCl + SO2 + HCl} (chlorination).
- Hydrolysis: \ce{RCOCl + H2O -> RCO2H + HCl}.
- Alcoholysis (esterification): \ce{RCOCl + ROH \xrightarrow[]{pyridine} RCO2R + HCl}.
- Aminolysis: \ce{RCOCl + 2NH3 -> RCONH2 + NH4Cl} (2 equiv NH3).
- Reduction:
• LiAlH4 (excess) \rightarrow \ce{RCH2OH} (two hydride deliveries).
• LiAlH(OtBu)3 (selective) \rightarrow aldehyde. - Organometallic additions:
• Grignard (2 equiv) \rightarrow tertiary alcohol (adds twice).
• Gilman reagent \ce{R'2CuLi} (1 equiv) \rightarrow ketone (single substitution).
Acid Anhydrides
- Preparation:
• Self-condensation of acetic acid at high T \rightarrow acetic anhydride + H2O.
• \ce{RCOCl + RCO2^- Na^+ -> (RCO)2O + NaCl}. - Reactions parallel those of acid chlorides; leaving group is \ce{RCO2^-} instead of \ce{Cl^-}.
- Alkylation of Carboxylate: \ce{RCO2^- + R'X -> RCO2R'} (SN2; requires strong base e.g. \ce{NaH} then alkyl halide).
- Fischer Esterification (acid-catalyzed, reversible):
\ce{RCO2H + R'OH \rightleftharpoons[H2O][H^+] RCO2R' + H2O}.
• Driven forward by excess alcohol or removal of water (Dean–Stark). - Alternative: acid chloride + alcohol (+ pyridine) \rightarrow ester (irreversible).
- Hydrolysis:
• Acidic: reverse of Fischer.
• Basic (saponification): \ce{RCO2R' + OH^- -> RCO2^- + R'OH}; product carboxylate must be acid-work-up to acid. - Reduction:
• LiAlH4 \rightarrow two-step to primary alcohol.
• DIBAH (\approx -78\,^{\circ}!\mathrm{C}) \rightarrow aldehyde (one hydride). - Grignard (2 equiv) \rightarrow tertiary alcohol (analogous to acid chloride case).
Amide Chemistry
- Synthesis: best via acid chloride + amine (or ammonia) because direct coupling with carboxylic acid is sluggish (requires \ge 200 °C).
- Hydrolysis (harsh):
• Acidic (6 M HCl, heat): \ce{RCONH2 -> RCO2H + NH4^+}.
• Basic (NaOH, heat): \ce{RCONH2 -> RCO2^- + NH3}. - Reduction (excess LiAlH4) \rightarrow amine \ce{RCH2NH2} (C=O completely removed).
Nitrile Chemistry
- Preparations:
• \ce{RBr + NaCN -> RCN + NaBr} (SN2).
• Dehydration of amide: \ce{RCONH2 + P2O5 -> RCN + H2O}. - Hydrolysis (acidic or basic) \rightarrow carboxylic acid (via amide).
- Grignard Addition + work-up \rightarrow ketone:
\ce{RCN + R'MgBr -> RC(=N^-MgBr)R' \xrightarrow[]{H3O^+} RCOR'}. - Reduction (LiAlH4) \rightarrow primary amine \ce{RCH2NH2}.
Functional-Group Interconversion & Synthetic Planning
- Flowchart concept: acid \leftrightarrow chloride \leftrightarrow anhydride \leftrightarrow ester \leftrightarrow amide \leftrightarrow nitrile.
• Upward moves (toward more reactive) require activating reagents (e.g. \ce{SOCl2}).
• Downward moves (to less-reactive) accomplished via nucleophilic acyl substitution. - When building C–C bonds, choose a protocol that positions the new carbon skeleton adjacent to the correct functional group (e.g., Grignard on acid chloride for tertiary alcohol vs. Grignard on nitrile for ketone).
Spectroscopic Identification
- IR: carbonyl stretch 1650 – 1850\;\text{cm}^{-1}.
• Exact frequency diagnostic:
– Acid chloride: \sim 1800\,\text{cm}^{-1}.
– Anhydride (two bands): 1820 & 1760.
– Ester: \sim 1740.
– Carboxylic acid: \sim 1710 (+ broad O-H 2500–3500).
– Amide: \sim 1660 – 1690.
• Conjugation drops \nu_{C=O} by ≈20–30 cm⁻¹. - ^{13}\text{C} NMR:
• Carbonyl carbons of derivatives: 160 – 185\;\text{ppm}.
• Nitrile carbon: 115 – 130\;\text{ppm} (sp-hybrid). - ^{1}\text{H} NMR: CO2H proton highly deshielded \approx 12\;\text{ppm}.