UL

Midterm Review Notes

REVIEW FOR MIDTERM

ITEMS TO MEMORIZE

Truth Table for the Negation of a Proposition

P

¬P

T

F

F

T

Truth Table for the Conjunction of Two Propositions

P

Q

P ∧ Q

T

T

T

T

F

F

F

T

F

F

F

F

Truth Table for the Disjunction of Two Propositions

P

Q

P ∨ Q

T

T

T

T

F

T

F

T

T

F

F

F

Truth Table for the Exclusive Or of Two Propositions

P

Q

P ⊕ Q

T

T

F

T

F

T

F

T

T

F

F

F

Truth Table for the Conditional Statement (P → Q)

P

Q

P → Q

T

T

T

T

F

F

F

T

T

F

F

T

Truth Table for the Biconditional (P ↔ Q)

P

Q

P ↔ Q

T

T

T

T

F

F

F

T

F

F

F

T

Constructing Truth Tables

Logical Equivalence Proofs
  • Example: Prove that P ∨ (Q ∧ R) and (P ∨ Q) ∧ (P ∨ R) are logically equivalent.

P

Q

R

Q ∧ R

P ∨ (Q ∧ R)

P ∨ Q

P ∨ R

(P ∨ Q) ∧ (P ∨ R)

T

T

T

T

T

T

T

T

T

T

F

F

T

T

T

T

T

F

T

F

T

T

T

T

T

F

F

F

T

T

T

T

F

T

T

T

T

T

T

T

F

T

F

F

F

T

F

F

F

F

T

F

F

F

T

F

F

F

F

F

F

F

F

F

Logical Equivalences

Laws of Logics

Equivalence

Name

P ↔ P

Identity laws

P ∨ F ↔ P

Domination laws

P ∨ T ↔ T

Domination laws

P ∧ F ↔ F

Domination laws

P ∧ T ↔ P

Identity laws

P ∨ P ↔ P

Idempotent laws

P ∧ P ↔ P

Idempotent laws

¬(¬P) ↔ P

Double negation law

P ∨ Q ↔ Q ∨ P

Commutative laws

(P ∨ Q) ∨ R ↔ P ∨ (Q ∨ R)

Associative laws

P ∧ (Q ∨ R) ↔ (P ∧ Q) ∨ (P ∧ R)

Distributive laws

¬(P ∧ Q) ↔ ¬P ∨ ¬Q

De Morgan's laws

P ∧ Q ↔ P ∧ (Q ∨ R)

Absorption laws

P ∨ Q ↔ P ∨ (P ∧ Q)

Absorption laws

Quantifiers

Types of Quantifiers

Statement

When True

When False

∀x P(x)

P(x) is true for every x

There is an x for which P(x) is false.

∃x P(x)

There is an x for which P(x) is true.

P(x) is false for every x.

De Morgan's Laws for Quantifiers

Negation

Equivalent Statement

¬∀x P(x)

∃x ¬P(x)

¬∃x P(x)

∀x ¬P(x)

Rules of Inference

Basic Rules of Inference

Rule of Inference

Name

P, P → Q

Modus ponens

P, ¬Q

¬(P → Q)

P ∧ Q, P

Simplification

P ∨ Q, ¬P

Q

P & Q

Conjunction

(P ∨ Q) ∧ ¬R

Q

Rules for Quantified Statements

Rule of Inference

Name

∀x P(x)

Universal Instantiation

P(c) for arbitrary c

Universal Generalization

∃x P(x)

Existential Instantiation

P(c) for some element c

Existential Generalization

Proof Techniques

Proof by Contradiction
Example: Proof that √2 is irrational.

If we assume √2 is rational, it can be expressed as a fraction p/q (where p and q are integers and q ≠ 0). Squaring both sides results in a contradiction…

Proof by Contraposition
Example: Prove that if n is an integer and 3n + 2 is odd, then n is odd.

Assume that n is even, then n can be expressed as 2k. Therefore, 3(2k) + 2 = 6k + 2, which is even. This contradicts the odd result.