Sine, Cosine, and Tangent Ratios:
sin(θ)=oppositehypotenuse\sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}}
cos(θ)=adjacenthypotenuse\cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}}
tan(θ)=oppositeadjacent\tan(\theta) = \frac{\text{opposite}}{\text{adjacent}}
Pythagorean Theorem (for solving sides):
a2+b2=c2a^2 + b^2 = c^2
Distance Formula:
d=(x2−x1)2+(y2−y1)2d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
Midpoint Formula:
M=(x1+x22,y1+y22)M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)
Gradient (Slope) Formula:
m=y2−y1x2−x1m = \frac{y_2 - y_1}{x_2 - x_1}
Equation of a Straight Line:
y=mx+cy = mx + c
y−y1=m(x−x1)y - y_1 = m(x - x_1)
Arithmetic Sequence:
an=a+(n−1)da_n = a + (n - 1)d
Sum of Arithmetic Series:
Sn=n2(2a+(n−1)d)S_n = \frac{n}{2} (2a + (n - 1)d)
Sn=n2(a+l)S_n = \frac{n}{2} (a + l)
Geometric Sequence:
an=a⋅r(n−1)a_n = a \cdot r^{(n - 1)}
Sum of Geometric Series:
Sn=a(1−rn1−r)(for r≠1)S_n = a \left( \frac{1 - r^n}{1 - r} \right) \quad \text{(for } r \neq 1\text{)}
S∞=a1−r(for ∣r∣<1)S_\infty = \frac{a}{1 - r} \quad \text{(for } |r| < 1\text{)}
Direct Variation:
y=kxy = kx
Inverse Variation:
y=kxy = \frac{k}{x}
Power Relationships:
y=kxny = kx^n
Correlation Coefficient (r): Measures the strength and direction of a linear relationship between two variables.
Equation of the Line of Best Fit: Typically found using linear regression methods.
Formulating Linear Inequalities: Based on constraints given in word problems.
Graphing Inequalities: Plotting lines and shading feasible regions.
Optimization: Finding the maximum or minimum value of an objective function within the feasible region.
Sine, Cosine, and Tangent Functions:
y=sin(x),y=cos(x),y=tan(x)y = \sin(x), \quad y = \cos(x), \quad y = \tan(x)
Amplitude and Period:
Amplitude: The maximum value of the sine or cosine function.
Period: The length of one complete cycle of the function.
Transforming Non-Linear Equations:
y=axb ⟹ log(y)=log(a)+blog(x)y = ax^b \implies \log(y) = \log(a) + b\log(x)
y=aebx ⟹ ln(y)=ln(a)+bxy = ae^{bx} \implies \ln(y) = \ln(a) + bx
Converting between Degrees and Radians:
Radians=Degrees×π180\text{Radians} = \text{Degrees} \times \frac{\pi}{180}
Degrees=Radians×180π\text{Degrees} = \text{Radians} \times \frac{180}{\pi}
Arc Length:
s=rθs = r\theta
Area of a Sector: