GH

Lecture on Electric Potential and Conductivity

Electric Scalar Potential

  • In electric circuits, a convenient node is selected as ground and assigned zero reference voltage.
  • In free space and material media, infinity is chosen as the reference point with V = 0.
  • At a point P, the electric potential is given by:
    • \hat{E} = \frac{q}{4 \pi \epsilon_0 R^2} \hat{R} (V/m)
    • {\rho} = \frac{q}{2 \pi r l \epsilon_0} (V/m)

Path Independence of Electrostatic Field

  • The line integral of the electrostatic field E along any closed path is zero.
  • {V{21}} + V{12} = 0
  • V{21} = V2 - V1 = -\int{P1}^{P2} E \cdot dl
  • \oint E \cdot dl = 0 (Electrostatics)
  • Kirchhoff's voltage law is applicable.
  • A vector field with a zero line integral along any closed path is conservative or irrotational. Thus, the electrostatic field E is conservative.

Electric Potential Due to Charges

  • For a point charge, the electric potential V at range R is:
    • V = \frac{q}{4 \pi \epsilon_0 R} (V)
  • For continuous charge distributions:
    • Volume charge distribution: V = \frac{1}{4 \pi \epsilon0} \int{V'} \frac{\rho_v}{R'} dV'
    • Surface charge distribution: V = \frac{1}{4 \pi \epsilon0} \int{S'} \frac{\rho_s}{R'} dS'
    • Line charge distribution: V = \frac{1}{4 \pi \epsilon0} \int{l'} \frac{\rho_l}{R'} dl'

Relating E to V

  • Differential relationship: dV = -E \cdot dl
  • For a scalar function V: dV = \nabla V \cdot dl, where {nabla}V is the gradient of V.
  • Relationship between E and V: E = -\nabla V
    • V = -\intP^{P2} E \cdot dl (V)
  • This allows determining E by first calculating V and then taking the negative gradient of V.

2013 Test 2 Q3

  • A uniform line charge density {\rhol} = \rho1 C/m exists on a circular ring of radius r = a.
  • Find expressions for the potential, V(R) and electric field intensity, E(R) at the point R = (0,0,z).
  • |R - R'| = \sqrt{a^2 + z^2}
  • dl' = a d\phi' \hat{\phi}
  • V(R) = \frac{1}{4 \pi \epsilon0} \int0^{2 \pi} \frac{\rhol dl'}{|R - R'|} = \frac{1}{4 \pi \epsilon0} \int0^{2 \pi} \frac{\rhol a d\phi'}{\sqrt{a^2 + z^2}} = \frac{\rhol a}{2 \epsilon0 \sqrt{a^2 + z^2}}
  • E(R) = \frac{1}{4 \pi \epsilon0} \int0^{2\pi} \frac{\rho_l dl' (R - R')}{|R - R'|^3}
  • E = -\nabla V = -\hat{z} \frac{\partial}{\partial z} \frac{\rhol a}{2 \epsilon0 \sqrt{a^2 + z^2}} = \hat{z} \frac{\rhol a z}{2 \epsilon0 (a^2 + z^2)^{3/2}} V/m

Poisson’s & Laplace’s Equations

  • In the absence of charges:
  • Differential form of Gauss's law:
    • {nabla} \cdot D = \rho
    • {nabla} \cdot E = \frac{\rho}{\epsilon}
  • Only if {\epsilon} is homogeneous medium.

Laplace’s Equations

  • {\nabla}^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0
  • Cylindrical coordinates:
    • {\nabla}^2 V = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r}\right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2} = 0
  • Spherical coordinates:
    • {\nabla}^2 V = \frac{1}{R^2} \frac{\partial}{\partial R} \left(R^2 \frac{\partial V}{\partial R}\right) + \frac{1}{R^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta}\right) + \frac{1}{R^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \phi^2} = 0

Application of Laplace's Equation

  • Find the potential function in the region between two cylindrical conductors.
  • Use cylindrical coordinates.
  • Assume {pm}Q.
  • Find E and V.
  • Potential V_{ab}.
  • {\nabla}^2 V = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r}\right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2} = 0
  • E \neq 0, V_{ab} \neq 0

Boundary Conditions

  • Neglect fringe effects. V(r,\phi,z) = V(r)

  • {\nabla}^2 V = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r}\right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2} = 0

  • {\frac{d}{dr} \left( r \frac{dV}{dr} \right)=0

  • Boundary conditions:

    • V(r = a) = V_a
    • V(r = b) = V_b
  • Solution:

    • V(r) = K1 \ln(r) + K2
    • V(r=a) = Va = K1 \ln(a) + K_2
    • V(r=b) = Vb = K1 \ln(b) + K_2
  • {V(r)} = V{ab} \frac{\ln(\frac{r}{a})}{\ln(\frac{b}{a})} + Va

  • {K1} = \frac{V{ab}}{\ln(\frac{b}{a})}

  • {K2} = Va - \frac{V_{ab}}{\ln(\frac{b}{a})} \ln(a)

  • Boundary conditions:

    • {V(r=b)} = V_b
    • {\frac{dV}{dr}} = \frac{K_1}{r}

Conduction Current

  • Conductivity measures how easily electrons travel through a material under an applied electric field.
  • Conduction (volume) current density:
    • J = \sigma E (A/m²) (Ohm's law)
    • I = \int_S J \cdot ds (A), where S is the surface area.
    • As = n As

Conductivity

  • A perfect dielectric is a material with {\sigma} = 0.
  • A perfect conductor is a material with {\sigma} = \infty.
  • Some materials (superconductors) exhibit such behavior.
MaterialConductivity, {\sigma} (S/m)
Conductors
Silver6.2 × 10^7
Copper5.8 × 10^7
Gold4.1 × 10^7
Aluminum3.5 × 10^7
Iron10^7
Mercury10^6
Carbon3 × 10^4
Semiconductors
Pure germanium2.2
Pure silicon4.4 × 10^{-4}
Insulators
Glass10^{-12}
Paraffin10^{-15}
Mica10^{-15}
Fused quartz10^{-17}
  • J = \sigma E (A/m²)
  • Perfect dielectric: {J = 0}, Perfect conductor: {E = 0}.

Resistance

  • Homogeneous conductor
  • Constant cross section, A
  • Uniform E field
    • R = \frac{V}{I} = \frac{l}{\sigma A}

Arbitrary Conductor Resistance

  • R = \frac{V}{I} = \frac{\int E \cdot dl}{\int \sigma E \cdot ds}

Lossy Coaxial Cable

  • Find the resistance between two cylindrical conductors.
  • Assume a leakage current I between the inner and outer conductor.
    • E = \frac{I}{2 \pi r l \sigma} \hat{r}
    • J = \sigma E = \frac{I}{2 \pi r l} \hat{r}
    • V{ab} = - \inta^b E \cdot dl = \frac{I}{2 \pi \sigma l} \ln \frac{a}{b}

Resistance Calculation

\begin{aligned}
V{ab} &= -\intb^a E \cdot dr = \int_a^b \frac{I}{2 \pi r \sigma l} dr \
&= \frac{I}{2 \pi \sigma l} \ln\left(\frac{b}{a}\right)
\end{aligned}

  • R{ab} = \frac{V{ab}}{I} = \frac{1}{2 \pi \sigma} \frac{\ln(\frac{b}{a})}{l}

2003 Test 2 Q1

  • Use spherical coordinates.
  • Assume {I_o} is known.
  • Find {J, E, V_{ab}}.

Current Density

  • {overrightarrow{J}} = \frac{Io}{S(R)} \overrightarrow{aR} = \frac{Io}{2 \pi R^2 (1 - \cos \thetao)} \overrightarrow{a_R} A/m^2

Electric Field Intensity and Potential Difference

E = \frac{J}{\sigma} = \frac{Io}{2 \pi R^2 (1 - \cos \thetao) \sigma} \hat{R}

V{ab} = - \inta^b E \cdot dl = - \int{Ra}^{Rb} \frac{Io}{2 \pi R^2 (1 - \cos \thetao) \sigma} dR = \frac{Io}{2 \pi (1 - \cos \thetao) \sigma} \left[ \frac{1}{R} \right]{Ra}^{Rb}

V{ab} = \frac{Io}{2 \pi (1 - \cos \thetao) \sigma} \left[ \frac{1}{Ra} - \frac{1}{R_b} \right]