Electric Scalar Potential
- In electric circuits, a convenient node is selected as ground and assigned zero reference voltage.
- In free space and material media, infinity is chosen as the reference point with V = 0.
- At a point P, the electric potential is given by:
- \hat{E} = \frac{q}{4 \pi \epsilon_0 R^2} \hat{R} (V/m)
- {\rho} = \frac{q}{2 \pi r l \epsilon_0} (V/m)
Path Independence of Electrostatic Field
- The line integral of the electrostatic field E along any closed path is zero.
- {V{21}} + V{12} = 0
- V{21} = V2 - V1 = -\int{P1}^{P2} E \cdot dl
- \oint E \cdot dl = 0 (Electrostatics)
- Kirchhoff's voltage law is applicable.
- A vector field with a zero line integral along any closed path is conservative or irrotational. Thus, the electrostatic field E is conservative.
Electric Potential Due to Charges
- For a point charge, the electric potential V at range R is:
- V = \frac{q}{4 \pi \epsilon_0 R} (V)
- For continuous charge distributions:
- Volume charge distribution: V = \frac{1}{4 \pi \epsilon0} \int{V'} \frac{\rho_v}{R'} dV'
- Surface charge distribution: V = \frac{1}{4 \pi \epsilon0} \int{S'} \frac{\rho_s}{R'} dS'
- Line charge distribution: V = \frac{1}{4 \pi \epsilon0} \int{l'} \frac{\rho_l}{R'} dl'
Relating E to V
- Differential relationship: dV = -E \cdot dl
- For a scalar function V: dV = \nabla V \cdot dl, where {nabla}V is the gradient of V.
- Relationship between E and V: E = -\nabla V
- V = -\intP^{P2} E \cdot dl (V)
- This allows determining E by first calculating V and then taking the negative gradient of V.
2013 Test 2 Q3
- A uniform line charge density {\rhol} = \rho1 C/m exists on a circular ring of radius r = a.
- Find expressions for the potential, V(R) and electric field intensity, E(R) at the point R = (0,0,z).
- |R - R'| = \sqrt{a^2 + z^2}
- dl' = a d\phi' \hat{\phi}
- V(R) = \frac{1}{4 \pi \epsilon0} \int0^{2 \pi} \frac{\rhol dl'}{|R - R'|} = \frac{1}{4 \pi \epsilon0} \int0^{2 \pi} \frac{\rhol a d\phi'}{\sqrt{a^2 + z^2}} = \frac{\rhol a}{2 \epsilon0 \sqrt{a^2 + z^2}}
- E(R) = \frac{1}{4 \pi \epsilon0} \int0^{2\pi} \frac{\rho_l dl' (R - R')}{|R - R'|^3}
- E = -\nabla V = -\hat{z} \frac{\partial}{\partial z} \frac{\rhol a}{2 \epsilon0 \sqrt{a^2 + z^2}} = \hat{z} \frac{\rhol a z}{2 \epsilon0 (a^2 + z^2)^{3/2}} V/m
Poisson’s & Laplace’s Equations
- In the absence of charges:
- Differential form of Gauss's law:
- {nabla} \cdot D = \rho
- {nabla} \cdot E = \frac{\rho}{\epsilon}
- Only if {\epsilon} is homogeneous medium.
Laplace’s Equations
- {\nabla}^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0
- Cylindrical coordinates:
- {\nabla}^2 V = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r}\right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2} = 0
- Spherical coordinates:
- {\nabla}^2 V = \frac{1}{R^2} \frac{\partial}{\partial R} \left(R^2 \frac{\partial V}{\partial R}\right) + \frac{1}{R^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta}\right) + \frac{1}{R^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \phi^2} = 0
Application of Laplace's Equation
- Find the potential function in the region between two cylindrical conductors.
- Use cylindrical coordinates.
- Assume {pm}Q.
- Find E and V.
- Potential V_{ab}.
- {\nabla}^2 V = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r}\right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2} = 0
- E \neq 0, V_{ab} \neq 0
Boundary Conditions
Neglect fringe effects. V(r,\phi,z) = V(r)
{\nabla}^2 V = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r}\right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2} = 0
{\frac{d}{dr} \left( r \frac{dV}{dr} \right)=0
Boundary conditions:
- V(r = a) = V_a
- V(r = b) = V_b
Solution:
- V(r) = K1 \ln(r) + K2
- V(r=a) = Va = K1 \ln(a) + K_2
- V(r=b) = Vb = K1 \ln(b) + K_2
{V(r)} = V{ab} \frac{\ln(\frac{r}{a})}{\ln(\frac{b}{a})} + Va
{K1} = \frac{V{ab}}{\ln(\frac{b}{a})}
{K2} = Va - \frac{V_{ab}}{\ln(\frac{b}{a})} \ln(a)
Boundary conditions:
- {V(r=b)} = V_b
- {\frac{dV}{dr}} = \frac{K_1}{r}
Conduction Current
- Conductivity measures how easily electrons travel through a material under an applied electric field.
- Conduction (volume) current density:
- J = \sigma E (A/m²) (Ohm's law)
- I = \int_S J \cdot ds (A), where S is the surface area.
- As = n As
Conductivity
- A perfect dielectric is a material with {\sigma} = 0.
- A perfect conductor is a material with {\sigma} = \infty.
- Some materials (superconductors) exhibit such behavior.
Material | Conductivity, {\sigma} (S/m) | |
---|
Conductors | | |
Silver | 6.2 × 10^7 | |
Copper | 5.8 × 10^7 | |
Gold | 4.1 × 10^7 | |
Aluminum | 3.5 × 10^7 | |
Iron | 10^7 | |
Mercury | 10^6 | |
Carbon | 3 × 10^4 | |
Semiconductors | | |
Pure germanium | 2.2 | |
Pure silicon | 4.4 × 10^{-4} | |
Insulators | | |
Glass | 10^{-12} | |
Paraffin | 10^{-15} | |
Mica | 10^{-15} | |
Fused quartz | 10^{-17} | |
- J = \sigma E (A/m²)
- Perfect dielectric: {J = 0}, Perfect conductor: {E = 0}.
Resistance
- Homogeneous conductor
- Constant cross section, A
- Uniform E field
- R = \frac{V}{I} = \frac{l}{\sigma A}
Arbitrary Conductor Resistance
- R = \frac{V}{I} = \frac{\int E \cdot dl}{\int \sigma E \cdot ds}
Lossy Coaxial Cable
- Find the resistance between two cylindrical conductors.
- Assume a leakage current I between the inner and outer conductor.
- E = \frac{I}{2 \pi r l \sigma} \hat{r}
- J = \sigma E = \frac{I}{2 \pi r l} \hat{r}
- V{ab} = - \inta^b E \cdot dl = \frac{I}{2 \pi \sigma l} \ln \frac{a}{b}
Resistance Calculation
\begin{aligned}
V{ab} &= -\intb^a E \cdot dr = \int_a^b \frac{I}{2 \pi r \sigma l} dr \
&= \frac{I}{2 \pi \sigma l} \ln\left(\frac{b}{a}\right)
\end{aligned}
- R{ab} = \frac{V{ab}}{I} = \frac{1}{2 \pi \sigma} \frac{\ln(\frac{b}{a})}{l}
2003 Test 2 Q1
- Use spherical coordinates.
- Assume {I_o} is known.
- Find {J, E, V_{ab}}.
Current Density
- {overrightarrow{J}} = \frac{Io}{S(R)} \overrightarrow{aR} = \frac{Io}{2 \pi R^2 (1 - \cos \thetao)} \overrightarrow{a_R} A/m^2
Electric Field Intensity and Potential Difference
E = \frac{J}{\sigma} = \frac{Io}{2 \pi R^2 (1 - \cos \thetao) \sigma} \hat{R}
V{ab} = - \inta^b E \cdot dl = - \int{Ra}^{Rb} \frac{Io}{2 \pi R^2 (1 - \cos \thetao) \sigma} dR = \frac{Io}{2 \pi (1 - \cos \thetao) \sigma} \left[ \frac{1}{R} \right]{Ra}^{Rb}
V{ab} = \frac{Io}{2 \pi (1 - \cos \thetao) \sigma} \left[ \frac{1}{Ra} - \frac{1}{R_b} \right]