BIOH12012 – Urinary System Anatomy & Physiology (Week 3)
Functions of the Kidney
- Maintenance of fluid balance
- Regulates total body water via filtration, reabsorption and secretion.
- Maintenance of electrolyte balance
- Fine-tunes concentrations of Na^+ , K^+, Ca^{2+}, Cl^- and other ions.
- Regulation of acid–base balance
- Adjusts urinary excretion of H^+ and HCO_3^- to keep arterial pH ≈ 7.35–7.45.
- Endocrine functions
- Renin (blood pressure), erythropoietin (RBC production), calcitriol (vitamin D activation), prostaglandins, and clearance of peptide hormones.
Anatomy of the Nephron
- Vascular components
- Afferent arteriole → glomerulus → efferent arteriole → peritubular capillaries/vasa recta.
- Tubular components
- Bowman's (glomerular) capsule → proximal convoluted tubule (PCT) → loop of Henle (descending thin + thick ascending limbs) → distal convoluted tubule (DCT) → collecting tubule/duct → papillary duct → minor calyx.
- Juxtaglomerular apparatus (JGA)
- Macula densa (DCT) + granular/juxtaglomerular cells (arteriole walls) + extraglomerular mesangial cells.
- Coordinates renal perfusion pressure and filtrate composition.
Glomerular Filtration Membrane
- Three layers form a size- and charge-selective barrier:
- Fenestrated capillary endothelium – blocks formed elements but lets plasma through.
- Basement membrane – negatively charged protein mesh; hinders proteins > 70 kDa.
- Visceral layer (podocytes) – interdigitating foot processes create filtration slits; slit diaphragms provide final molecular sieve.
- Direction of flow: capillary lumen → filtrate within Bowman’s space (large red arrows in electron micrograph).
- Filtration (renal corpuscle)
- Blood pressure forces plasma minus proteins into capsular space → filtrate.
- Reabsorption (PCT, loop, DCT, collecting duct)
- Valuable solutes & water returned to peritubular fluid then blood.
- Secretion (mostly PCT & DCT)
- Additional wastes, drugs, ions transported from blood → tubular fluid.
Segment-Specific Transport Activities
- Proximal convoluted tubule
- Reabsorbs ~65 % H₂O, Na^+, Cl^-; 100 % glucose, amino acids; secretes organic acids/bases.
- Loop of Henle
- Descending thin limb: H₂O permeable → water exits.
- Thick ascending limb: impermeable to H₂O; active Na^+/K^+/2Cl^- reabsorption.
- Distal convoluted tubule
- Variable Na^+ reabsorption and K^+, H^+ secretion (aldosterone sensitive).
- Collecting duct
- Variable H₂O reabsorption (ADH-regulated); fine-tunes Na^+, K^+, H^+, HCO_3^-.
Juxtaglomerular Complex (JGC)
- Macula densa (chemoreceptors)
- Detect ↑/↓ NaCl in DCT filtrate.
- High NaCl → release adenosine → afferent arteriole vasoconstriction → ↓ GFR.
- Granular (juxtaglomerular) cells
- Modified smooth muscle; baroreceptors.
- ↓ afferent pressure / ↓ filtrate NaCl → secrete renin.
- Extraglomerular mesangial cells
- Relay signals between macula densa & granular cells; provide structural support, phagocytosis, filtration regulation.
Glomerular Filtration Pressures & GFR
- Driving forces
- Glomerular hydrostatic pressure HP_{gc} (≈ 55 \text{ mmHg}) – outward.
- Capsular hydrostatic pressure HP_{cs} (≈ 15 \text{ mmHg}) – inward.
- Glomerular colloid osmotic pressure OP_{gc} (≈ 30 \text{ mmHg}) – inward.
- Net filtration pressure
NFP = HP{gc} - (OP{gc} + HP_{cs}) - Glomerular filtration rate (GFR)
- Volume of filtrate produced per minute by both kidneys: ≈ 125 \text{ mL min}^{-1} (≈ 180 \text{ L day}^{-1}).
Regulation of GFR
- Intrinsic (renal autoregulation)
- Myogenic: afferent arteriole smooth muscle responds to stretch.
• ↓ BP → vasodilation → maintains HP_{gc}. - Tubuloglomerular feedback: macula densa senses filtrate NaCl; modulates afferent tone via adenosine or NO.
- Extrinsic
- Sympathetic nervous system: norepinephrine → strong afferent/efferent constriction during hypotension → prioritises MAP.
- Hormonal RAAS: renin → \uparrow angiotensin II → systemic vasoconstriction & aldosterone release.
Countercurrent Mechanisms & Urine Concentration
- Countercurrent multiplier (loop of Henle)
- Opposite flow + differential permeabilities create medullary osmotic gradient (≈ 300→1200 \text{ mOsm}).
- Countercurrent exchanger (vasa recta)
- Preserves gradient by passive H₂O/solute exchange.
- Role of ADH in collecting duct
- Inserts aquaporin-2 channels → water follows medullary gradient → concentrated urine when body needs to conserve H₂O.
Endocrine Controllers of Fluid & Electrolytes
- Renin–Angiotensin–Aldosterone System (RAAS)
- ↓ renal perfusion / ↓ Na^+ sensed by JGC → renin release.
- Renin cleaves angiotensinogen → angiotensin I.
- ACE (lungs) converts angiotensin I → angiotensin II.
- Angiotensin II effects:
- Potent vasoconstriction → ↑ SVR & BP.
- Stimulates aldosterone (adrenal cortex) → ↑ Na^+ & H₂O reabsorption, ↑ K^+ secretion.
- Stimulates ADH secretion + thirst.
- Antidiuretic Hormone (ADH / vasopressin)
- Released by posterior pituitary when hypothalamic osmoreceptors detect ↑ plasma osmolarity or when baroreceptors sense ↓ blood volume/pressure.
- Actions: ↑ H₂O reabsorption in collecting ducts → ↓ urine volume; stimulates thirst.
- Aldosterone
- Stimulated by ↑ K^+, angiotensin II, or ↓ Na^+.
- Acts on DCT & collecting duct principal cells: up-regulates ENaC & Na^+/K^+-ATPase.
- Consequence: ↑ Na^+ (and Cl⁻, H₂O) reabsorption, ↑ K^+ secretion → expands ECF volume.
- Natriuretic peptides (ANP, BNP)
- Released by atrial/ventricular stretch.
- Promote diuresis & natriuresis: inhibit RAAS & ADH, dilate afferent arteriole → ↑ GFR.
Body Fluid Compartments & Electrolyte Distribution
- Intracellular fluid (ICF)
- ~2/3 total body water; high K^+, HPO_4^{2-}, Mg^{2+}, proteins.
- Extracellular fluid (ECF)
- Interstitial fluid + plasma + CSF, lymph, synovial, etc.
- High Na^+, Cl^- , HCO_3^- , Ca^{2+}.
- Milliequivalent distribution diagram (see Martini Fig 27-2) reflects relative ionic composition.
Major Electrolytes & Imbalances
Sodium (Na⁺)
- Normal serum 135–145 \text{ mmol L}^{-1}.
- Hyponatraemia (<135)
- Water shifts into cells → cerebral oedema.
- Causes: excess H₂O intake, heart failure, vomiting, diarrhoea, renal disease, diuretics.
- S/S: lethargy, confusion, seizures, hypotension, tachycardia.
- Hypernatraemia (>145)
- Cells shrink (crenate).
- Causes: dehydration, inadequate ADH, fever.
- S/S: thirst, agitation, seizures, coma.
Potassium (K⁺)
- Normal serum 3.5–5.2 \text{ mmol L}^{-1}.
- Hypokalaemia (<3.5)
- Causes: diarrhoea, vomiting, diuretics, insulin therapy.
- S/S: muscle weakness, cramps, arrhythmias, flattened T-waves.
- Hyperkalaemia (>5.2)
- Causes: renal failure, tissue breakdown, ACE-inhibitors.
- S/S: peaked T-waves, ventricular fibrillation, diarrhoea, muscle twitching.
Calcium (Ca²⁺)
- Normal serum total 2.25–2.75 \text{ mmol L}^{-1} (ionised ≈ 1.1–1.3).
- Hypocalcaemia (<2.1)
- Causes: hypoparathyroidism, vitamin D deficiency, renal failure.
- S/S: tetany, Chvostek & Trousseau signs, laryngospasm, seizures.
- Hypercalcaemia (>2.6)
- Causes: hyperparathyroidism, malignancy, immobility.
- S/S: polyuria, kidney stones, constipation, arrhythmias, mental changes.
Net Effects of RAAS on BP, Volume & Urine
- Vasoconstriction ↑ SVR
- Aldosterone-mediated Na^+/H₂O retention ↑ blood volume
- ADH-mediated water retention & thirst ↑ volume
- Result: ↑ BP, ↓ urinary output until homeostasis restored.
Integration & Clinical Relevance
- Effective renal perfusion & intact JGA crucial to BP regulation; ACE inhibitors & ARBs exploit RAAS pathway for hypertension therapy.
- Electrolyte monitoring essential in heart failure, kidney disease, postoperative care – subtle shifts precipitate life-threatening arrhythmias or CNS dysfunction.
- Countercurrent mechanism underpins ability to produce urine from dilute (