Given a right triangle:
sin(A) = cos(B)
cos(A) = sin(B)
tan(A) = \frac{1}{tan(B)}
30° - 60° - 90° Trigonometric Ratios:
sin(30°) = \frac{1}{2}
cos(30°) = \frac{\sqrt{3}}{2}
tan(30°) = \frac{\sqrt{3}}{3}
45° - 45° - 90° Trigonometric Ratios:
sin(45°) = \frac{\sqrt{2}}{2}
cos(45°) = \frac{\sqrt{2}}{2}
tan(45°) = 1
Cone
Volume: V = \frac{1}{3}πr^2h
Surface Area: S.A. = πrl + πr^2, where l is the slant height.
Rectangular Prism
Volume: V = lwh
Surface Area: S.A. = 2lw + 2wh + 2lh
Regular Pyramid
Volume: V = \frac{1}{3}lwh
Cylinder
Volume: V = πr^2h
Surface Area: S.A. = 2πr^2 + 2πrh
Cavalieri's Principle: If two solids have congruent altitudes and every plane parallel to the bases results in cross-sections of equal area, then the solids have equal volumes.
Population Density: Population Density = \frac{Population}{Area}
Rectangle → Cylinder
Triangle → Cone
Semi-Circle → Sphere
Secant and Tangent
2 Tangents
2 Secants
Measure of angle formed = \frac{1}{2}(larger arc – smaller arc)
Tangent and Secant: A^2 = B(B + C)
2 Secants: A(A + B) = C(C + D)
2 Chords: (A)(B) = (C)(D)
2 Tangents Formulas
Area of a Sector: A = (\frac{θ}{360}°)πr^2, where θ is the central angle in degrees.
Arc Length: Arc Length= 2πr(\frac{θ}{360}°), where θ is the central angle in degrees.
Equation of circle with center at origin: x^2 + y^2 = r^2
Equation of a circle with center (h, k): (x − h)^2 + (y − k)^2 = r^2
Example: Given (x + 5)^2 + (y − 7)^2 = 81, Center: (-5, 7); Radius= \sqrt{81} = 9
Inscribed Angle: \measuredangle BCD = 2\measuredangle BAC
Angle Inscribed in a Semi-Circle: \measuredangle ABD = 90°
Inscribed Quadrilateral Theorem: Opposite angles of an inscribed quadrilateral are supplementary.
Cylinder
Horizontal Plane: Circle
Vertical Plane: Rectangle
Cone
Horizontal Plane: Circle
Vertical Plane: Triangle
Rectangular Prism
Horizontal Plane: Rectangle
Vertical Plane: Rectangle
Triangular Prism
Horizontal Plane: Triangle
Vertical Plane: Rectangle
Sphere
Horizontal Plane: Circle
Vertical Plane: Circle
Triangle Midsegment Theorem: If AB = DB and AE = EC, then DE || BC and DE = \frac{1}{2} BC.
Triangle Inequality Theorem:
a + b > c
a + c > b
b + c > a