BG

CP Chemistry Semester 2 Final Review Notes

Formula Writing, Naming Compounds & Equations:

  • Elements in columns (groups) on the Periodic Table have similar chemical properties.
  • Elements in rows on the Periodic Table have repeating or cyclic chemical properties.
  • Naming compounds:
    • KBr: potassium bromide
    • MgCl2: magnesium chloride
    • FeS: iron (II) sulfide
    • CuF3: copper (III) fluoride
    • Pb(NO3)2: lead (II) nitrate
    • As2O3: diarsenic trioxide
    • BaSO4: barium sulfate
    • N2: nitrogen gas
    • H3PO4: phosphoric acid
    • SO2: sulfur dioxide
  • Neutral chemical formulas:
    • Silicon tetrachloride: SiCl4
    • Oxygen gas: O2
    • Diphosphorus pentoxide: P2O5
    • Sodium chloride: NaCl
    • Cupric iodide: CuI2
    • Stannous oxide: SnO
    • Ammonium phosphate: (NH4)3PO4
    • Manganese (IV) oxide: MnO2
    • Iron (III) hydroxide: Fe(OH)3
    • Potassium sulfate: K2SO4
  • Matching:
    • I) polyatomic ion - f) PO4-3
    • II) multivalent ion - b) Fe+2 or Fe+3
    • III) simple anion - d) S-2
    • IV) simple cation - a) Ca+2
    • V) element - g) Au
    • VI) compound - c) NaOH
    • VII) diatomic element - e) Cl
  • Matching names with chemical formulas:
    • a) acid - V) H2SO4
    • b) base - VIII) Mg(OH)2
    • c) oxide - IV) Al2O3
    • d) salt - I) NaNO3
    • e) metal - II) Ca
    • f) metallic carbonate - III) MgCO3
    • g) monatomic molecule - VI) Ne
    • h) diatomic molecule - VII) Cl2
  • In 2Ca3(PO4)2:
    • Calcium atoms: 6
    • Polonium atoms: 0
    • Phosphate ions: 4
    • Oxygen atoms: 16
    • Phosphorus atoms: 4
    • Calcium phosphate molecules: 2
    • Charge of calcium: +2
    • Charge of phosphate ion: -3
    • Charge of calcium phosphate: 0
  • Balancing equations:
    • 2 NaBr + 1 Cl2 \rightarrow 2 NaCl + 1 Br2
    • 1 Ti2O3 + 3 CO \rightarrow 2 Ti + 3 CO_2
    • 2 Ga(OH)3 + 2 H2SO4 \rightarrow 1 Ga2(SO4)2 + 6 H_2O
    • 2 C6H6 + 15 O2 \rightarrow 12 CO2 + 6 H_2O
    • 2 AlCl3 + 3 K2CO3 \rightarrow 1 Al2(CO3)3 + 6 KCl
    • 1 Ba(OH)2 + 1 CO2 \rightarrow 1 BaCO3 + 1 H2O
  • Given: ^{23}_{11}Na
    • Number of protons: 11
    • Atomic mass: 23
    • Number of neutrons: 12
    • Electrons in a neutral atom: 11
    • Atomic number: 11
  • Four ways to identify a chemical change:
    • Bubbles
    • Color change
    • Temperature change
    • Change in smell/taste
    • Precipitate formation
  • Precipitate: solid formed in a reaction
  • Seven diatomic gases: H2, O2, N2, F2, Cl2, Br2, I2
  • Reaction types:
    • Combustion: CH4 + O2 \rightarrow H2O + CO2
    • Single Replacement: LiCl + F2 \rightarrow LiF + Cl2
    • Decomposition: CaCO3 \rightarrow CaO + CO2
    • Double Replacement: FeCl3 + Na2CO3 \rightarrow Fe2(CO3)3 + NaCl
    • Composition/Synthesis: H2 + Cl2 \rightarrow HCl

Moles and Stoichiometry

  • Avogadro’s number: 6.02 x 10^{23}
  • Standard volume: 1 mol = 22.4 L at STP (Standard Temperature and Pressure)
  • For 2(NH4)2SO4:
    • Sulfur atoms: 2
    • Hydrogen atoms: 16
    • Molar mass: 132.14 g/mol
  • Moles of CO2 in 98.3 g: 98.3 g CO2 * (1 mole CO2 / 44.01 g CO2) = 2.23 moles CO2
  • Grams in 3.5 moles of CH4: 3.5 moles CH4 * (16.05 g CH4 / 1 mole CH4) = 56.175 g CH4
  • Molecules in 2.3 g of HCl: 2.3 g HCl * (1 mole HCl / 36.46 g HCl) * (6.02 x 10^{23} molecules HCl / 1 mole HCl) = 3.80 x 10^{22} molecules HCl
  • Liters of CO from 230 grams of CO: 230 g CO * (1 mole CO / 28.01 g CO) * (22.4 L CO / 1 mole CO) = 183.93 L CO
  • Molecules of H2O in 47.3 liters: 47.3 L H2O * (1 mole H2O / 22.4 L H2O) * (6.02 x 10^{23} molecules HCl / 1 mole H2O) = 1.27 x 10^{24} molecules HCl
  • Combustion of C6H6 with excess oxygen:
    • Equation: 2 C6H6(g) + 15 O2(g) \rightarrow 12 CO2(g) + 6 H_2O (g)
    • Grams of H2O produced from 24.3 L of C6H6: 24.3 L C6H6 * (1 mole C6H6 / 22.4 L C6H6) * (6 mole H2O / 2 mole C6H6) * (18.02 g H2O / 1 mole H2O) = 58.65 g H2O
    • Grams of CO2 produced from 260 g of oxygen gas: 260 g O2 * (1 mole O2 / 32.00 g O2) * (12 mole CO2 / 15 mole O2) * (44.01 g CO2 / 1 mole CO2) = 286.07 g CO2
  • Limiting reagent:
    • Reaction: C2H4 + 2O2 \rightarrow 2CO + 2H2O
    • 2.8 moles of C2H4 reacts with 6.5 moles of O2.
    • 2.8 moles C2H4 * (2 mole O2 / 1 mole C2H4) = 5.6 moles O2
    • C2H4 is the limiting reactant.
  • Moles of water produced:
    • 2.8 moles C2H4 * (2 mole H2O / 1 mole C2H4) = 5.6 moles H2O

Gas Laws

  • Boyle’s Law:
    • Equation: P1V1 = P2V2
    • Relationship: Pressure and volume are inversely related.
  • Gay Lussac’s Law:
    • Equation: P1/T1 = P2/T2
    • Relationship: Pressure and temperature are directly related.
  • Charles Law:
    • Equation: V1/T1 = V2/T2
    • Relationship: Volume and temperature are directly related.
  • Ideal Gas Law:
    • Equation: PV = nRT
  • Units of pressure: Pressure, Volume, Temperature, and Moles
  • Sample of hydrogen gas:
    • Initial: 25.0 ml at 2.5 atmospheres
    • Final volume: 20.0 ml
    • P2 = (P1V1) / V2 = (25.0 mL * 2.5 atm) / 20.0 mL = 3.125 atm
  • Absolute zero:
    • Temperature at which all motion of particles is minimal.
    • 0 K or -273 °C
  • Standard temperature: 0 °C or 273 K
  • Kelvin conversion: 25 degrees Celsius = 273 + 25 = 298 K
  • Gas heated from 35 °C to 56 °C:
    • Initial volume: 25.0 L
    • V2 = (V1 * T2) / T1 = (25 L * (56 + 273 K)) / (35 + 273 K) = 26.70 L
  • Hot air balloon:
    • Initial volume: 2500 L at STP
    • Final conditions: -40 °C and 0.35 atm
    • V2 = (P1 * V1 * T2) / (T1 * P2) = (1 atm * 2500 L * 233 K) / (273 K * 0.35 atm) = 6096.28 L
  • Pressure exerted by 0.563 moles of gas at 25°C in a 0.650 L vessel:
    • P = (nRT) / V = (0.563 moles * 0.0821 (Latm) / (Kmol) * 298 K) / 0.650 L
  • Volume of gas at 0.921 atm moved from 0.868 atm container at 80ml:
    • V2 = (P1V1) / P2 = (0.868 atm * 80 mL) / 0.921 atm = 75.40 mL
  • Moles of gas in 500 mL at 32°C and 0.93 atm:
    • n = (PV) / (RT) = (0.5 L * 0.93 atm) / (0.0821 (Latm) / (Kmol) * 305 K) = 0.019 moles
  • Pressure definition: Collisions of molecules against the walls of the container.
  • Marshmallows in a vacuum chamber: Pressure decreased, marshmallows expanded.
  • Inversely related pressure and volume: Decreasing volume increases pressure.
  • Increasing kinetic energy of a gas: Increase the temperature.
  • Increased kinetic energy with constant volume: Pressure increases.
  • Decreased kinetic energy with constant pressure: Volume decreases.

Thermodynamics

  • Reaction: Energy + NH4OH ----> NH4+1 + OH-
  • Endothermic or exothermic? (Requires more context to determine; assume endothermic if energy is listed as a reactant)
  • Diagram showing change in enthalpy: (Diagram not provided, needs visual representation)
  • Reactants or products with more energy? Products (for endothermic)
  • Change positive or negative? Positive (for endothermic)
  • Reactants or products more stable? Reactants (for endothermic)
  • Enthalpy: The total heat content of a system.
  • Activation energy: Amount of energy needed for reactants to undergo a specified chemical reaction.
  • Catalysts speed up reactions by providing an alternative pathway with lower activation energy.
  • Endothermic reaction: Work is done on the system.
  • Exothermic reaction: Work is done on the surroundings.
  • Temperature change:
    • Exothermic: Heats up
    • Endothermic: Cools down
  • Specific heat of metal cylinder:
    • Given: mass = 10 g, initial temp = 96°C, final temp = 42°C, enthalpy loss = 242.46 J
    • q = m * C * (Tf – Ti)
    • C = q / (m * (Tf – Ti)) = 242.46 J / (10g * (42 - 96)) = 0.449 J/g

Acids and Bases

  • Properties of acids:
    • Sour
    • pH < 7
    • Turn litmus red
    • Phenolphthalein is colorless
    • Not slippery
    • Produce H+
  • Properties of bases:
    • Bitter
    • pH > 7
    • Turn litmus blue
    • Phenolphthalein is pink
    • Slippery
    • Produce OH-
  • Acid-Base Definitions:
    • Acids: Donate proton (H+) OR dissociate in water and produces H+
    • Bases: Accept proton (H+) OR dissociate in water and produces OH-
  • Equations:
    • 2HCl + Mg \rightarrow MgCl2 + H2 (Single Replacement)
    • H2SO4 + 2NaOH \rightarrow Na2SO4 + 2H_2O (Neutralization)
    • 2HCl + CaCO3 \rightarrow CaCl2 + H2O + CO2 (Double Replacement and Decomposition)
  • Acid + Metal = SALT + HYDROGEN GAS
  • Acid + Base = SALT + WATER
  • Acids give off hydronium ions in water (H+ or H3O+)
  • HCl ionization in water: produces H^+ and Cl^-
  • Bases give off hydroxide ions in water (OH-)
  • pH values:
    • Weak acid: 6
    • Strong acid: 1
    • Weak base: 8
    • Strong base: 13
  • Acids and Bases - Formulas and Location:
    • Sulfuric Acid - H2SO4 - Acid Rain
    • Nitric Acid - HNO_3 - Acid Rain
    • Acetic Acid - HCH_3COO - Vinegar
    • Milk of Magnesia - Mg(OH)_2 - Laxative
    • Sodium Hydroxide - NaOH - Cleaning Products/Lye
    • Calcium Hydroxide - Ca(OH)_2 - Lime

Nuclear

  • Radiation Types:
    • Alpha (α): Symbol - α, Shielding - hand, Size - large, Dangerous - Internal (Very), External (No)
    • Beta (β): Symbol - β, Shielding - aluminum, Size - small, Dangerous - Less damage to living tissue
    • Gamma (γ): Symbol - γ, Shielding - lead, Size - very small, Dangerous - Least dangerous in terms of tissue damage
  • Factors Determining Radiation Danger:
    • Dose (quantity)
    • Exposure Time
    • Area Exposed
    • Tissue Type
  • Half-Life: Time for half a sample to decay
  • Short Half-Life = More Dangerous (heavy dose in short time)
  • Alpha Decay of Uranium-235: ^{235}{92}U \rightarrow ^42He + ^{231}_{90}Th
  • Beta Decay of Uranium-235: ^{235}{92}U \rightarrow ^0{-1}e + ^{235}_{93}Np
  • Isotopes: Atoms with same # of protons, different # of neutrons
  • Fissionable Uranium: Uranium-238
  • Fission vs. Fusion:
    • Fission: Splitting large isotope into smaller isotopes
    • Fusion: Fusing smaller isotopes into a larger isotope
  • Radon Gas Source: Natural breakdown of radioactive material (uranium, thorium) in soil
  • Radiocarbon Dating Range: Up to 50,000 years (half-life = 5730 years)
  • Fission Reaction Bullet: Neutron
  • Ionizing Radiation: Energy released by atoms (EM waves or particles)
  • Radiation Measurement: Geiger Counter
  • Nuclear Power Plants:
    • Process: Fission
    • Pros: Cheap energy, no carbon emission
    • Cons: Environmental, meltdown risk, water demand, nuclear waste