Gas Exchange & Transport – Comprehensive Study Notes

Learning Objectives
  • How O2 and CO2 move between atmosphere

  • tissues

    • Bulk flow

    lungs; diffusion

    across A/C membrane; perfusion

    to tissues.

  • Determinants of alveolar O2 (P{AO2}) & CO2 (P{ACO2})

    • Calculation of P_{AO2} via Alveolar-Air Equation.

  • Normal regional (gravity-dependent) \frac{V}{Q} variations & their effects on gas exchange.

  • Computing total arterial O2 content C{aO2}.

  • Factors altering the arteriovenous O2 content difference \Delta C{(a-v)O_2} \approx 5\;\text{mL·dL}^{-1}.

  • Variables that shift the HbO_2 dissociation curve and thus control loading/unloading.

  • Three blood transport forms for CO_2; role of Haldane effect.

  • Inter-relationship between O2 & CO2 carriage.

  • Causes & recognition of impaired O2 delivery or CO2 removal.


Introduction to Respiration
  • Definition: sequential movement of O2 to tissues for aerobic metabolism + removal of metabolic CO2.

  • Two exchange sites

    • Lungs: atmosphere

blood.

  • Peripheral tissues: blood

cells.


Diffusion Basics
  • Whole-body gradients drive passive diffusion.

  • O2 cascade: P{O2}:\;159\;\text{mmHg (air)} \to \sim5\;\text{mmHg (mitochondria)}.

  • CO2 gradient reversed: P{CO2}:\;\sim60\;\text{mmHg (cell)} \to 1\;\text{mmHg (air)}.


Determinants of Alveolar Gas Tensions
Alveolar CO_2
  • P{ACO2} varies directly with metabolic CO2 production and inversely with alveolar ventilation (\dot V_A).

  • \uparrow physiologic dead space (V_D) (e.g., pulmonary embolus)

\uparrow P_{ACO2}.

  • Normal range: 35–45\;\text{mmHg}.

Alveolar O_2
  • Primary driver: inspired partial pressure P_{IO2}.

  • Dilution by H2O vapor (47 mmHg at 37 °C) + alveolar CO2.

  • Alveolar-Air Equation:
    P{AO2}=F{IO2}(PB-47)-\frac{P{ACO2}}{0.8}

  • When F{IO2}>0.60, the CO2 term can be omitted.

Alveolar N_2
  • By Dalton’s law:
    P{AN2}=PB-(P{AO2}+P{ACO2}+P_{H2O}).

  • With constant F{IO2}, P{AO2} varies inversely with P{ACO2} because PB & P_{H2O} are fixed.


Mechanisms & Limits of Diffusion across A/C Membrane
  • Barriers: alveolar epithelium

interstitial space

capillary endothelium

RBC membrane.

  • Fick’s Law: \dot V{gas}=\frac{A\,D\,(P1-P_2)}{T} (A = area, D = diffusing constant, T = thickness).

  • Transit time

    • Rest: blood in pulmonary capillary

    0.75\;s.

    • Heavy exercise: \downarrow to 0.25\;s.

    • Equilibration normally complete by 0.25\;s

diffusion reserve.

  • Any diffusion limitation or further \downarrow transit (e.g., tachycardia, fibrosis) threatens equilibration.


Variations from Ideal Gas Exchange
Anatomic Shunts
  • Bronchial & Thebesian veins drain de-oxygenated blood directly into left heart

PaO2 5–10 mmHg below P{AO2}.

Dead Space Definitions
  • Anatomic dead space: conducting airways to terminal bronchioles (\approx150\;\text{mL}).

  • Alveolar dead space: ventilated alveoli lacking perfusion.

Regional \frac{V}{Q} Inequality (Gravity Effects)
  • Ideal \frac{V}{Q} =1.

  • Apices: \frac{V}{Q}\approx3.3

    • \uparrow P{AO2}\,(\sim132\;\text{mmHg}); \downarrow P{ACO2}\,(\sim32\;\text{mmHg}).

  • Bases: \frac{V}{Q}\approx0.66

    • Ventilation \uparrow but perfusion
      cancel{} \uparrow\uparrow (\times20)

\downarrow P{AO2}\,(\sim89\;\text{mmHg}); \uparrow P{ACO2}\,(\sim42\;\text{mmHg}).


Oxygen Transport
Forms
  1. Physically dissolved

    • Henry’s Law: \text{mL O}2\,/\,\text{dL}=0.003\times P{O2}(\text{mmHg}).

  2. Chemically bound to Hb

    • Capacity: 1.34\;\text{mL O}_2\,\text{·g}^{-1}\;Hb.

    • Approximately 70
      \times more O_2 carried bound vs dissolved.

Hemoglobin Saturation & Dissociation Curve
  • S{aO2}=\frac{HbO2}{Hb_{total}}\times100; normal 95–100 %.

  • Sigmoid curve

    • Flat plateau (>90 % S{aO2}) safeguards loading at lungs even if P{aO2} drops.

    • Steep limb (<90 %) aids unloading in tissues.

Total Arterial O_2 Content
  • C{aO2}=(0.003\,P{aO2})+(1.34\,Hb\,S_{aO2})

  • Normal: 16–20 {\text{mL·dL}}^{-1}.

  • Arterio-venous difference: \sim5\;\text{mL·dL}^{-1}.

Factors Shifting the HbO_2 Curve
  • pH (Bohr effect)

    • \downarrowpH (\uparrow H^+)

right shift

\downarrow affinity

\uparrow unloading.

  • Tissue pH

    7.37; lung pH

    7.40.

    • Temperature

  • \uparrowT

right shift (meets \uparrow metabolic need).

  • \downarrowT

left shift (\downarrow demand).

  • 2,3-DPG

    • \uparrow2,3-DPG (e.g., chronic hypoxemia)

right shift.

  • Stored banked blood loses 2,3-DPG

risk impaired unloading.

  • Abnormal Hemoglobins

    • HbS: sickling, hemolysis; ACS major mortality.

    • HbCO: CO binds 200
      \times > O2; displaces O2 + left shift; Tx = hyperbaric O_2.

    • MetHb (Fe^{3+}): cannot bind O_2; drugs (NO, NTG, lidocaine) induce; monitor metHb%.


Carbon Dioxide Transport
  • Total carriage: 45–55 {\text{mL·dL}}^{-1}

  1. Dissolved (\approx8\;\%): high solubility.

  2. Carbamino compounds (\approx12\;\%): binds terminal amino groups on proteins/Hb.

  3. Bicarbonate (\approx80\;\%): via hydrolysis (CO2+H2O \leftrightarrow H2CO3 \leftrightarrow H^+ + HCO_3^-).

    • Reaction accelerated by carbonic anhydrase inside RBCs.

    • HCO_3^- exits RBC in exchange for Cl^- (chloride shift / Hamburger phenomenon).

CO_2 Dissociation Curve & Haldane Effect
  • As Hb is oxygenated in lungs, capacity for CO_2 falls

facilitates unloading.

  • In tissues, deoxygenated Hb binds more CO_2 (carbamino) and buffers H^+.


Abnormalities of Gas Exchange & Transport
Inadequate O_2 Delivery
  • \dot D{O2}=C{aO2}\times CO

  • Hypoxemia etiologies

    • Low \frac{V}{Q} (most common)

    high \frac{V}{Q} areas cannot fully compensate due to plateau of HbO_2 curve.

    • Hypoventilation, diffusion limitation, anatomic/physiologic shunt, low (P_{IO2}) (altitude).

  • Hemoglobin Deficiency

    • Absolute: true anemia

\downarrow[Hb].

  • Relative: O_2 displacement (CO), abnormal Hb variants (MetHb, HbS).

    • Low Blood Flow

  • Shock

global hypoxia; ischemia

localized (may progress to infarction, metabolic acidosis).

  • Dysoxia (Cytopathic hypoxia)

    • Normal \dot D{O2} yet cells cannot utilize O2 (e.g., cyanide poisoning, severe sepsis/ARDS).

    • Low extraction ratio (\frac{\dot V{O2}}{\dot D{O2}}).

Impaired CO_2 Removal
  • \downarrow \dot V_A relative to metabolic rate.

    • Hypoventilation: \downarrow V_T (opioids), rarely \downarrow f.

    • \uparrowDead-space fraction (\frac{VD}{VT}): rapid shallow breathing or \uparrowphysiologic dead space (PE).

  • If compensatory \uparrow\dot V_E fails

hypercapnia & respiratory acidosis.

  • In chronic severe disease (e.g., COPD) \uparrow \frac{V}{Q} mismatch with limited ventilatory reserve leads to chronic hypercarbia