How O2 and CO2 move between atmosphere
tissues
Bulk flow
lungs; diffusion
across A/C membrane; perfusion
to tissues.
Determinants of alveolar O2 (P{AO2}) & CO2 (P{ACO2})
Calculation of P_{AO2} via Alveolar-Air Equation.
Normal regional (gravity-dependent) \frac{V}{Q} variations & their effects on gas exchange.
Computing total arterial O2 content C{aO2}.
Factors altering the arteriovenous O2 content difference \Delta C{(a-v)O_2} \approx 5\;\text{mL·dL}^{-1}.
Variables that shift the HbO_2 dissociation curve and thus control loading/unloading.
Three blood transport forms for CO_2; role of Haldane effect.
Inter-relationship between O2 & CO2 carriage.
Causes & recognition of impaired O2 delivery or CO2 removal.
Definition: sequential movement of O2 to tissues for aerobic metabolism + removal of metabolic CO2.
Two exchange sites
Lungs: atmosphere
blood.
Peripheral tissues: blood
cells.
Whole-body gradients drive passive diffusion.
O2 cascade: P{O2}:\;159\;\text{mmHg (air)} \to \sim5\;\text{mmHg (mitochondria)}.
CO2 gradient reversed: P{CO2}:\;\sim60\;\text{mmHg (cell)} \to 1\;\text{mmHg (air)}.
P{ACO2} varies directly with metabolic CO2 production and inversely with alveolar ventilation (\dot V_A).
\uparrow physiologic dead space (V_D) (e.g., pulmonary embolus)
\uparrow P_{ACO2}.
Normal range: 35–45\;\text{mmHg}.
Primary driver: inspired partial pressure P_{IO2}.
Dilution by H2O vapor (47 mmHg at 37 °C) + alveolar CO2.
Alveolar-Air Equation:
P{AO2}=F{IO2}(PB-47)-\frac{P{ACO2}}{0.8}
When F{IO2}>0.60, the CO2 term can be omitted.
By Dalton’s law:
P{AN2}=PB-(P{AO2}+P{ACO2}+P_{H2O}).
With constant F{IO2}, P{AO2} varies inversely with P{ACO2} because PB & P_{H2O} are fixed.
Barriers: alveolar epithelium
interstitial space
capillary endothelium
RBC membrane.
Fick’s Law: \dot V{gas}=\frac{A\,D\,(P1-P_2)}{T} (A = area, D = diffusing constant, T = thickness).
Transit time
Rest: blood in pulmonary capillary
0.75\;s.
Heavy exercise: \downarrow to 0.25\;s.
Equilibration normally complete by 0.25\;s
diffusion reserve.
Any diffusion limitation or further \downarrow transit (e.g., tachycardia, fibrosis) threatens equilibration.
Bronchial & Thebesian veins drain de-oxygenated blood directly into left heart
PaO2 5–10 mmHg below P{AO2}.
Anatomic dead space: conducting airways to terminal bronchioles (\approx150\;\text{mL}).
Alveolar dead space: ventilated alveoli lacking perfusion.
Ideal \frac{V}{Q} =1.
Apices: \frac{V}{Q}\approx3.3
\uparrow P{AO2}\,(\sim132\;\text{mmHg}); \downarrow P{ACO2}\,(\sim32\;\text{mmHg}).
Bases: \frac{V}{Q}\approx0.66
Ventilation \uparrow but perfusion
cancel{} \uparrow\uparrow (\times20)
\downarrow P{AO2}\,(\sim89\;\text{mmHg}); \uparrow P{ACO2}\,(\sim42\;\text{mmHg}).
Physically dissolved
Henry’s Law: \text{mL O}2\,/\,\text{dL}=0.003\times P{O2}(\text{mmHg}).
Chemically bound to Hb
Capacity: 1.34\;\text{mL O}_2\,\text{·g}^{-1}\;Hb.
Approximately 70
\times more O_2 carried bound vs dissolved.
S{aO2}=\frac{HbO2}{Hb_{total}}\times100; normal 95–100 %.
Sigmoid curve
Flat plateau (>90 % S{aO2}) safeguards loading at lungs even if P{aO2} drops.
Steep limb (<90 %) aids unloading in tissues.
C{aO2}=(0.003\,P{aO2})+(1.34\,Hb\,S_{aO2})
Normal: 16–20 {\text{mL·dL}}^{-1}.
Arterio-venous difference: \sim5\;\text{mL·dL}^{-1}.
pH (Bohr effect)
\downarrowpH (\uparrow H^+)
right shift
\downarrow affinity
\uparrow unloading.
Tissue pH
7.37; lung pH
7.40.
Temperature
\uparrowT
right shift (meets \uparrow metabolic need).
\downarrowT
left shift (\downarrow demand).
2,3-DPG
\uparrow2,3-DPG (e.g., chronic hypoxemia)
right shift.
Stored banked blood loses 2,3-DPG
risk impaired unloading.
Abnormal Hemoglobins
HbS: sickling, hemolysis; ACS major mortality.
HbCO: CO binds 200
\times > O2; displaces O2 + left shift; Tx = hyperbaric O_2.
MetHb (Fe^{3+}): cannot bind O_2; drugs (NO, NTG, lidocaine) induce; monitor metHb%.
Total carriage: 45–55 {\text{mL·dL}}^{-1}
Dissolved (\approx8\;\%): high solubility.
Carbamino compounds (\approx12\;\%): binds terminal amino groups on proteins/Hb.
Bicarbonate (\approx80\;\%): via hydrolysis (CO2+H2O \leftrightarrow H2CO3 \leftrightarrow H^+ + HCO_3^-).
Reaction accelerated by carbonic anhydrase inside RBCs.
HCO_3^- exits RBC in exchange for Cl^- (chloride shift / Hamburger phenomenon).
As Hb is oxygenated in lungs, capacity for CO_2 falls
facilitates unloading.
In tissues, deoxygenated Hb binds more CO_2 (carbamino) and buffers H^+.
\dot D{O2}=C{aO2}\times CO
Hypoxemia etiologies
Low \frac{V}{Q} (most common)
high \frac{V}{Q} areas cannot fully compensate due to plateau of HbO_2 curve.
Hypoventilation, diffusion limitation, anatomic/physiologic shunt, low (P_{IO2}) (altitude).
Hemoglobin Deficiency
Absolute: true anemia
\downarrow[Hb].
Relative: O_2 displacement (CO), abnormal Hb variants (MetHb, HbS).
Low Blood Flow
Shock
global hypoxia; ischemia
localized (may progress to infarction, metabolic acidosis).
Dysoxia (Cytopathic hypoxia)
Normal \dot D{O2} yet cells cannot utilize O2 (e.g., cyanide poisoning, severe sepsis/ARDS).
Low extraction ratio (\frac{\dot V{O2}}{\dot D{O2}}).
\downarrow \dot V_A relative to metabolic rate.
Hypoventilation: \downarrow V_T (opioids), rarely \downarrow f.
\uparrowDead-space fraction (\frac{VD}{VT}): rapid shallow breathing or \uparrowphysiologic dead space (PE).
If compensatory \uparrow\dot V_E fails
hypercapnia & respiratory acidosis.
In chronic severe disease (e.g., COPD) \uparrow \frac{V}{Q} mismatch with limited ventilatory reserve leads to chronic hypercarbia