Cardiovascular Responses to Exercise – Comprehensive Notes
Organization of the Circulatory System
- Cardiopulmonary / cardiorespiratory system = cardiovascular + pulmonary systems
- Principal goals of system
- Transport: O$_2$, nutrients to tissues
- Removal: CO$_2$, metabolic wastes
- Regulation: body temperature via blood distribution and sweating
- 4 major vessel categories
- Arteries & arterioles: high-pressure conduits → tissues
- Capillaries: site of gas & nutrient exchange
- Venules & veins: low-pressure return → heart; contain majority of blood volume (≈64 %)
Cardiac Anatomy & Blood Flow
- Heart positioned within pericardial sac
- Layers: epicardium, myocardium, endocardium
- Pericardial fluid reduces friction
- Chambers & valves
- Right atrium (RA) → tricuspid → right ventricle (RV) → pulmonary semilunar → pulmonary artery
- Left atrium (LA) → mitral/bicuspid → left ventricle (LV) → aortic semilunar → aorta
- Coronary circulation
- RCA supplies RA, RV, SA node, most AV node; branches → PDA (posterior ⅓ septum), acute marginal
- LMCA branches → LAD (anterior ⅔ septum, anterior LV) & LCx (LA + post-lat LV); minor: obtuse marginal, diagonals, septal perforators
Pulmonary vs. Systemic Circuits
- Pulmonary circuit (right heart): de-oxygenated blood → lungs via pulmonary arteries, returns O$_2$-rich via pulmonary veins
- Systemic circuit (left heart): O$2$-rich blood → body; returns O$2$-poor via vena cavae
Myocardium Characteristics & Training Effects
- High oxidative demand; supplied by coronary arteries
- Structural comparison to skeletal muscle
- Short, branching fibers, single nucleus, intercalated discs, endomysium only, primarily aerobic metabolism
- No satellite cells → negligible regeneration
- Exercise training is cardioprotective
- ↓ incidence & severity of myocardial infarction (MI)
- Mechanisms: ↑ antioxidant capacity, improved ATP-sensitive K$^+$ channel function
- Trained vs. untrained: ~40 % less tissue damage during MI
The Cardiac Cycle
- Systole = contraction / ejection (≈⅓ volume expelled/beat)
- Diastole = relaxation / filling
- At rest: diastole longer (0.5 s) vs. systole (0.3 s)
- Heavy exercise: both shorten; total cycle ~0.33 s at 180 b·min$^{-1}$
- Pressure events
- AV valves open when P{ventricle}
- Semilunar open when P{ventricle}>P{aorta/pulmonary}
- Heart sounds: S$1$ = AV closure; S$2$ = semilunar closure
Arterial Blood Pressure & Hypertension
- Expressed as SBP/DBP (normal 120/80\,\text{mmHg})
- Pulse pressure = SBP − DBP; Mean arterial pressure (MAP):
\text{MAP}=\text{DBP}+0.33(\text{SBP}-\text{DBP}) - Hypertension: BP > 140/90\,\text{mmHg}
- Primary (essential) ≈ 90 %; multifactorial
- Secondary: renal, endocrine, etc.
- Risks: LV hypertrophy, atherosclerosis, stroke, renal damage
- Determinants of MAP
\text{MAP}=Q \times TPR (cardiac output × total peripheral resistance)
- Short-term control: baroreceptors, SNS
- Long-term: kidneys (blood volume)
Electrophysiology & Electrocardiography
- Conduction pathway: SA node → atrial myocardium → AV node (delay) → AV bundle → R/L bundle branches → Purkinje fibers
- ECG components
- P wave: atrial depolarization
- PR segment/interval: AV nodal delay & bundle conduction
- QRS: ventricular depolarization (+ atrial repolarization)
- ST segment: early ventricular repolarization (isoelectric)
- T wave: ventricular repolarization
- Normal sinus rhythm 60–100 b·min$^{-1}$; bradycardia
- Diagnostic exercise testing: ST-segment depression ≥1 mm suggests myocardial ischemia
Coronary & Myocardial Pathologies
- MI = total/near-total coronary occlusion → ischemic necrosis
- ECG: ST-T changes, peaked T, arrhythmias (PVCs, VT, VF)
- Acute pericarditis → diffuse ST elevation
- Ventricular hypertrophy
- LVH common in chronic HTN; may cause baseline ST changes, false-positive stress tests
- Sudden cardiac death (~1/200,000 youth athletes)
- Children: congenital coronaries, cardiomyopathy, myocarditis
- Adults: CAD, cardiomyopathy
Cardiac Output (Q̇)
- Definition: blood pumped per minute
Q=HR \times SV - Typical values (college-age)
- Rest: ~5 L·min$^{-1}$ (trained & untrained)
- Max untrained: 18–22 L·min$^{-1}$
- Max trained male: ≈34 L·min$^{-1}$, female ≈24 L·min$^{-1}$
- Stroke volume determinants
- End-diastolic volume (preload)
- Afterload (MAP)
- Contractility (SNS, EPI/NE)
- Frank–Starling: ↑ EDV → ↑ fiber length → ↑ SV
- Venous return enhanced by venoconstriction (SNS), skeletal muscle pump, respiratory pump
- Sympathetic stimulation shifts SV-EDV curve upward (↑ contractility)
Regulation of Heart Rate
- Parasympathetic (vagus): ↓ HR via SA/AV inhibition (acetylcholine)
- Sympathetic (cardiac accelerator): ↑ HR & contractility via β$_1$ receptors
- Resting bradycardia in endurance athletes due to ↑ vagal tone
- HR increase at exercise onset
- First phase: parasympathetic withdrawal to ~100 b·min$^{-1}$
- Further rise: SNS activation
- Max HR estimation
HR{max}=220-\text{age} or HR{max}=208-0.7\times\text{age} - β-blockers: compete for β receptors → ↓ HR, contractility; used in CAD/HTN, alter exercise prescription
- Heart Rate Variability (HRV)
- SD of R–R intervals; reflects sympathovagal balance
- Low HRV predicts morbidity/mortality in CVD
Blood Composition & Hemodynamics
- Blood = plasma (ions, proteins, hormones) + cells (RBCs, WBCs, platelets)
- Hematocrit = % cells (≈42 %)
- Flow relationships
- Flow \propto \dfrac{\Delta P}{R}
- Resistance: R=\dfrac{\text{length}\times\text{viscosity}}{\text{radius}^4} (radius has greatest influence)
- MAP falls across systemic tree; largest drop across arterioles ("resistance vessels")
- Venous pressures influenced by gravity; skeletal muscle pump & valves prevent pooling
Oxygen Delivery & Fick Equation
- Muscular O$_2$ demand during exercise = 15–25× rest
- Achieved via ↑ Q̇ and blood redistribution
- a-vO$_2$ difference widens with intensity (↑ extraction)
- Fick:
\dot V{O2}=Q \times (a!−!v\,O_2\,\text{difference})
Cardiovascular Responses to Dynamic Exercise
- Cardiac Output
- HR & Q̇ rise linearly to VO$_2$ max
- SV: untrained plateau at 40–60 % VO$_2$ max; trained athletes continue to rise (no plateau)
- Blood Pressure
- SBP & MAP ↑ linearly; DBP ~constant
- Rate-pressure product (double product): HR\times SBP reflects myocardial O$_2$ demand
- Redistribution of Flow
- Rest: 15–20 % Q̇ → muscle; max exercise: 80–85 %
- Visceral organs constrict to 20–30 % of resting flow (SNS α-adrenergic)
- Local vasodilation (autoregulation) via ↓O$2$, ↑CO$2$, H$^+$, K$^+$, adenosine, nitric oxide
- Special cases
- Arm exercise at same VO$_2$ → ↑ HR & BP vs. leg (less muscle mass, more SNS activation)
- Resistance exercise: transient peaks up to 320/250 mmHg with Valsalva; SV ↓ concentric / ↑ eccentric; Q̇ may rise
- Prolonged steady exercise: Q̇ maintained; SV ↓ (dehydration); HR drifts upward (cardiovascular drift)
- Intermittent exercise recovery depends on fitness, environment, bout intensity/duration
- Environmental & Emotional factors
- Heat/humidity amplify HR, BP responses
- Pre-exercise anxiety elevates resting but not peak HR/BP
Neural & Reflex Control
- Central Command: feed-forward drive from motor cortex → CV control center
- Peripheral feedback fine-tunes via:
- Muscle mechanoreceptors (group III)
- Metaboreceptors (group IV; K$^+$, lactate, H$^+$, ATP)
- Baroreceptors (pressure)
- Heart mechanoreceptors
- Exercise Pressor Reflex: afferents → medulla → ↑ SNS → ↑ HR, BP, vasoconstriction non-active tissues
- Exaggerated in HF, HTN, PAD
- Functional Sympatholysis: local metabolites (NO, prostaglandins, adenosine, H$^+$, K$^+$) blunt SNS-mediated vasoconstriction in active muscles
- Impaired in hypertension; restored by ARBs, nebivolol, training
Chronic Adaptations to Training
- Endurance (aerobic)
- Eccentric LV hypertrophy (volume overload): chamber dilation, proportional wall thickening, ↑ myocyte length; no fibrosis/dysfunction; reversible
- Mild RV dilation & bi-atrial enlargement; ↑ cardiomyocyte proliferation
- Resistance training
- Concentric LV hypertrophy (pressure overload): ↑ wall thickness, little chamber dilation; ↑ myocyte width; reversible
- Hypertension pathologic remodeling
- Concentric → eccentric hypertrophy → HFpEF / HFrEF depending on MI etc.
Substrate Use by Heart During Exercise
- At rest: 40–70 % ATP from fatty acids, 20–30 % glucose, 5–15 % lactate
- During intense exercise: ↑ circulating fatty acids (lipolysis), ↑ lactate uptake, ↓ blood glucose reliance
Beta-Blockers Beyond Cardiology
- Often misused by musicians/performing artists for anxiety control
- Risks if unsupervised: hypotension, bradycardia, reduced exercise capacity, fine-motor impairment
Sudden Cardiac Death & Screening
- Rare but catastrophic; pre-participation screening (history, physical, ECG) identifies high-risk individuals (coronary anomalies, HCM, arrhythmogenic syndromes)
Summary Diagram of Acute Exercise Responses
- ↑ Q̇ via ↑ HR & SV (Frank–Starling + SNS)
- Metabolic vasodilation in muscle ↔ SNS vasoconstriction in viscera (functional sympatholysis)
- Muscle pump & deeper breathing → ↑ venous return
- Central & reflex controls coordinate to maintain MAP and O$_2$ delivery