Chapter 45: Cytogenetic & Molecular Pathology of Paediatric Cancer – Comprehensive Bullet Notes
Introduction
- Pediatric cancers often harbor pathognomonic cytogenetic / molecular lesions that (1) establish diagnosis, (2) drive biology, (3) stratify risk, (4) uncover drug-gable targets.
- Classic examples: t(11;22) EWS-FLI1 (Ewing sarcoma), t(8;21) RUNX1–RUNX1T1 (AML-M2), t(15;17) PML–RARA (APL) and MYCN amplification (neuroblastoma).
- Core laboratory armamentarium now spans low-resolution karyotyping to single–base, single-cell next-generation sequencing (NGS).
Cytogenetic & Molecular Methodologies
• Karyotyping
- Arrest metaphases → G/T-banding → global 5–10 Mb resolution.
- Pros: genome-wide, detects novel/complex changes.
- Cons: requires fresh, viable cells; culture failure common in solid tumours; low resolution; slow.
• Fluorescence / Chromogenic in-situ hybridization (FISH / CISH) - Break-apart, dual-fusion, centromeric & copy-number probes.
- Detect cryptic, masked, non-dividing nuclei; works on paraffin sections, touch imprints, smears.
- Break-apart EWSR1, FOXO1, MLL, ALK, MYCN widely used.
• Highly combinatorial FISH - SKY / M-FISH → each chromosome painted unique colour.
- Fiber-FISH & DIRVISH → 5 kb–700 kb resolution.
• Comparative genomic hybridisation - Conventional metaphase CGH (obsolete) vs Array-CGH (10–50 kb) vs SNP-array (copy-neutral LOH).
- Detect gains/losses >1–10 kb; balanced rearrangements missed.
• PCR-based assays - Genomic PCR → LOH, ITDs (eg FLT3).
- RT-PCR → fusion transcripts; sensitivity ≈ (1/10^4) cells; used for MRD.
- qPCR / digital PCR → copy number, expression, allelic ratio (eg FLT3-ITD AR > 0.5).
- Panhandle / LDI-PCR → partner-unknown breakpoint cloning (MLL, NUP98, EWSR1, NTRK3).
• Next-generation sequencing - Whole genome, exome, RNA-seq; or targeted "hemo-oncology" panels (100–600 genes); detects SNV, indel, CNV & fusions in 1 assay.
- Challenges: DNA quality/quantity, turnaround, data analysis, cost.
- Emerging multiplex non-PCR platforms (NanoString nCounter, Ab-FISH).
• Method comparison (Table 45-4 key points) - Cost: Sequencing > CGH/SNP > Karyotype > FISH > PCR.
- Fresh material mandatory only for karyotype/CGH; others work on fixed.
- Genome-wide only by karyotype/CGH/SNP/NGS.
Genomic Mechanisms in Pediatric Tumours
• Primary classes of aberration
- Balanced translocation → fusion oncoprotein (TF, kinase, epigenetic).
- Translocation → promoter-swap/up-regulation (MYC-Ig in Burkitt).
- High-level amplification (MYCN, FOXO1, MDM2, CDK4).
- Deletion / LOH (1p/11q neuroblastoma; 22q SMARCB1 rhabdoid).
- Chromothripsis / chromoplexy (i(17q) medulloblastoma; osteosarcoma).
• Etiology & predisposition - DNA double-strand break stimuli: V(D)J, meiotic recombination, TOP2 poisons, IR/UV, ROS.
- Chromatin proximity determines partner choice (RET–H4, MYC–Ig).
- Hereditary repair defects: NF1, ATM, NBN, BLM, RECQL4 (Rothmund–Thomson), BRCA2 (Fanconi D1), TP53 (Li-Fraumeni).
- Pharmacologic links: Alkylators → −5/−7; TOP2 poisons → MLLr.
Transcription-Factor Fusion Oncoproteins
• RUNX1-RUNX1T1 t(8;21) → block myeloid differentiation; good risk if high-dose Ara-C.
• CBFB-MYH11 inv(16)/t(16;16) → myelomonocytic + eosinophilia; good risk.
• PAX3/7-FOXO1 t(2;13)/(1;13) → alveolar RMS; PAX7 variant highly amplified → better OS.
• EWSR1-ETS family (FLI1 > ERG > others) ext{t}(11;22) etc → Ewing sarcoma; Type 1 (EWS7-FLI1 6) trend to superior outcome.
• EWSR1-WT1 t(11;22) → desmoplastic small round cell tumour; drives PDGFA & IGF1R.
• CIC-DUX4 t(4;19)/t(10;19) → Ewing-like SRBCT.
• SS18-SSX 1/2 t(X;18) → synovial sarcoma; SSX2 fusion & reduced SNAIL recruitment → better DFS.
Tyrosine-Kinase Fusion Oncoproteins
• ABL1 fusions
- t(9;22) BCR-ABL1 in 5 % childhood ALL (P190).
- ABL1, ABL2, PDGFRB, JAK2 fusions in Ph-like ALL.
• Receptor kinases in solid tumours - TPM3/4-ALK, CLTC-ALK, RANBP2-ALK in IMT (ALK IHC pattern useful).
- ASPSCR1-TFE3 t(X;17) alveolar soft part sarcoma & pediatric RCC (Xp11).
- COL1A1-PDGFB t(17;22) / ring 17-22 DFSP → imatinib responses.
• Internal tandem duplication - FLT3-ITD in 12–15 \% paediatric AML; allelic ratio > 0.5 → poor EFS.
Promoter-Swap / Up-regulation Translocations
• MYC-Ig t(8;14), t(2;8), t(8;22) in Burkitt lymphoma.
• LMO1/2, TAL1 (SIL), HOX11 to TCR loci \sim 40 % T-ALL.
• JAZF1-SUZ12 t(7;17) low-grade endometrial stromal tumour.
• PLAG1 activation by 8q12 rearrangements in lipoblastoma, pleomorphic adenoma.
Tumour-Type Highlights
Soft Tissue & Bone
• Ewing sarcoma
- CD99+, EWSR1-ETS fusion (95 %); secondary TP53 mut & CDKN2A del worsen prognosis.
- 1q gain (DTL) & 16q loss → relapse risk.
• Rhabdomyosarcoma - Fusion-positive alveolar (PAX3/7-FOXO1) vs fusion-negative embryonal.
- PAX7 fusion, <10 y, extremity location → favourable.
- CTNNB1 mut / APC loss in desmoid tumours; nuclear β-catenin IHC.
• Synovial sarcoma - TLE1 & SOX2 IHC; SS18-SSX fusion; HDAC, EZH2 & BRD4 dependency.
• Inflammatory myofibroblastic tumour – ALK fusions (50 %); crizotinib.
• GIST children – SDH-deficient (SDHB IHC–), KIT/PDGFRA WT; respond poorly to imatinib.
Non-mesenchymal paediatric solids
• Wilms tumour
- WT1 loss (11p13), 11p15 LOH (IGF2 up), 1p/16q LOH & 1q gain → relapse.
- Nephrogenic rests: PLNR (11p15) vs ILNR (WT1/CTNNB1).
• TFE3/TFEB-RCC in children (Xp11 & 6p21 translocations).
• NUT carcinoma t(15;19) BRD4-NUT; NUT IHC & BET inhibitors.
Neuroblastoma
• Risk genetics:
- MYCN amp (>10 copies), 1p36 del, 11q del, 17q gain → poor.
- Hyperdiploidy without 1p/11q loss → good.
- ALK mut/F1174L & germline R1275Q; ALK IHC vs sequencing.
- SNP 6p22 (FLJ44180) & 2q35 (BARD1) susceptibility loci.
CNS
• Medulloblastoma four molecular groups:
- WNT (CTNNB1, i(17q), >90 \% OS).
- SHH (PTCH1, SUFU, SMO).
- Group 3 (MYC amp, isochr 17q, worst).
- Group 4 (CDK6, SNCAIP, i17q).
• ATRT/rhabdoid: SMARCB1 (INI1) or SMARCA4 loss → cyclin D1 up; INI1 IHC–.
Germ Cell Tumours
• Isochromosome 12p pathognomonic (FISH or karyotype) except paediatric yolk-sac.
Hematologic Neoplasms
• Hodgkin lymphoma – 2p/9p/12q gains; L&H (BCL6) vs H-RS (REL, NF-κB activation); EBV + subset.
• Burkitt – MYC–Ig translocation, Ki-67 ≈ 100 \%.
• Anaplastic large cell – ALK fusions, CD30+, EMA+; ALK IHC pattern mirrors partner.
• B-ALL key lesions –
- TEL-AML1 t(12;21) good.
- Ph-like ALL (ABL1/JAK fusions, IKZF1 del) poor; TKI/JAKi sensitive.
- iAMP21, CRLF2-P2RY8, FLT3-ITD.
• T-ALL – NOTCH1 mut (50 %), PTEN del (8 %), ETP-ALL (MEF2C, JAK/STAT) worst.
• AML – Core binding factor (t8;21, inv16) good; FLT3-ITD, WT1, NUP98 poor.
• JMML – PTPN11 (35 %), NRAS/KRAS (25 %), NF1 (10 %); monosomy 7; RAS pathway inhibitors.
• Myeloid leukaemia Down syndrome – GATA1 mut + trisomy 21; high Ara-C sensitivity.
• Therapy-related (t-MDS/AML) – - Alkylator: −5/−7, complex, TP53 mut; latency ~6 yrs.
- TOP2 poison: MLLr, t(8;21), inv(16); latency 1–3 yrs.
Practical Diagnostic Algorithms
- Undifferentiated round cell tumour → CD99, desmin, keratin ±FISH (EWSR1 break-apart, FOXO1, CIC, BCOR).
- Paediatric renal mass < 10 y → TFE3 FISH ± WT1 IHC, look for t(1;22) in infants.
- Leukaemia with \ge15 % blasts post-topo II chemo → MLL FISH, RUNX1-RUNX1T1 PCR, inv16 FISH.
- Child with persistent monocytosis, splenomegaly → karyotype + RAS/NF1/PTPN11 sequencing; if monosomy 7 present consider HSCT.
Equations / Cut-offs (clinical)
• FLT3-ITD allelic ratio = \frac{\text{mutant peak}}{\text{mutant+wt peaks}}; AR >0.5 denotes high risk.
• MYCN amplification = >10 copies by FISH or >4 fold by qPCR.
• iAMP21 defined by \ge 3 extra RUNX1 signals on a single abnormal 21.
• High hyperdiploid ALL = >50 chromosomes; hypodiploid = <44.
Ethical / Practical Considerations
- Need for rapid (< 7 d) assays to influence front-line therapy (e.g.
ATRA in APL, imatinib in Ph+ ALL, crizotinib in ALK+ IMT). - Importance of sample triage: fresh tissue for karyotype/NGS; reserve touch imprints / FFPE for FISH.
- Informed consent for germline findings (TP53, ALK, DICER1).
- Long-term surveillance of childhood cancer survivors (t-MDS/AML risk rises \sim1 % per yr after epipodophyllotoxin).
Take-Home Bullet Summary
• Combine morphology + immunophenotype + cytogenetics for definitive paediatric cancer diagnosis.
• Balanced translocations dominate sarcomas, leukaemias; CNVs dominate neuroblastoma, osteosarcoma.
• Core binding factor AML, high hyperdiploid B-ALL, WNT-medulloblastoma = excellent outcomes.
• FLT3-ITD, iAMP21, IKZF1-del, CRLF2-rearranged ALL; MLL-r infant leukaemia; ETP-ALL = very high risk but offer novel targeted therapy windows.
• SDH-deficient GIST, ALK-IMT, COL1A1-PDGFB DFSP, NTRK3-fibrosarcoma = prototypic kinase-addicted paediatric solids responding to small-molecule inhibitors.
• Therapy-related myeloid neoplasms segregate by agent: alkylator → −5/−7/TP53; TOP2 → MLL.
• NGS panels increasingly frontline (fusion, SNV, CNV) but FISH/qPCR remain indispensable for speed and MRD.