Exponents (or powers) provide a compact way to write repeated multiplication.
Example of a very large quantity: mass of Earth \approx 5\,970\,000\,000\,000\,000\,000\,000\,000\,\text{kg}=5.97\times10^{24}\,\text{kg}.
Review of notation: 10^{24} is read “10 raised to the power 24”.
Re-cap of positive exponents learned earlier:
2^5 = 2\times2\times2\times2\times2.
For any non-zero integer a and positive integer m, a^m denotes m repeated factors of a.
Guiding question raised in the text: “What is 2^{-2} equal to?”—leads into negative exponents.
Pattern with base 10 illustrates meaning of negative powers:
10^2 = 100
10^1 = 10 (value becomes one-tenth of the previous step as the exponent drops by 1).
10^0 = 1
10^{-1}=\frac1{10}
10^{-2}=\frac1{10^2}=\frac1{100}
10^{-3}=\frac1{10^3}=\frac1{1000}
Continuing, 10^{-10}=\frac1{10^{10}}.
Same logic shown with base 3:
3^3=27,\;3^2=9,\;3^1=3,\;3^0=1.
Therefore 3^{-1}=\frac13,\;3^{-2}=\frac1{3^2}=\frac19,\;3^{-3}=\frac1{3^3}=\frac1{27}.
General definition (valid for any non-zero integer a and positive integer m):
a^{-m}=\frac1{a^{m}}.
Interpretation: a^{-m} is the multiplicative inverse (reciprocal) of a^{m}.
Quick practice (find the reciprocal):
2^{-4}\;\Rightarrow\;\frac1{2^4}
10^{-5}\;\Rightarrow\;\frac1{10^5}
7^{-2}\;\Rightarrow\;\frac1{7^2}
5^{-3}\;\Rightarrow\;\frac1{5^3}
10^{-100}\;\Rightarrow\;\frac1{10^{100}} ("googolth" reciprocal).
Whole numbers (review): 1425 = 1\times10^3 + 4\times10^2 + 2\times10^1 + 5\times10^0.
Mixed decimal: 1425.36 can be decomposed as
1\times10^3 + 4\times10^2 + 2\times10^1 + 5\times10^0 + 3\times10^{-1} + 6\times10^{-2}.
Try-it-yourself: Expand 1025.63 or 1256.249 analogously, noting that each step right of the decimal corresponds to a negative exponent.
For any non-zero integer a, and any integers m,n:
Product rule: a^m\times a^n = a^{m+n}.
Quotient rule: \displaystyle \frac{a^m}{a^n}=a^{m-n}.
Power of a power: (a^m)^n = a^{mn}.
Product to a power (common exponent): a^m\times b^m = (ab)^m.
Quotient to a power: \displaystyle \frac{a^m}{b^m}=\left(\frac{a}{b}\right)^m.
Zero exponent: a^0 = 1 (provided a\neq0).
Reciprocal form: a^{-m}=\frac1{a^{m}} (already highlighted).
Clarifications and caveats:
If the common base is neither 1 nor -1, equal powers imply equal exponents.
(-1)^p = 1 whenever p is even; (-1)^p=-1 when p is odd.
Small proofs provided in text by substituting negative values to verify product rule.
Evaluate simple negative powers:
2^{-3}=\frac1{2^3}=\frac18.
\left(\frac13\right)^{-2}=\left(3^{-1}\right)^{-2}=3^{2}=9.
Simplifications using laws:
( -4)^5\times(-4)^{-10}=(-4)^{5-10}=(-4)^{-5}=\frac1{(-4)^5}.
2^{5}\div 2^{-6}=2^{5-(-6)}=2^{11}.
Convert base: 4^{-3}\;(= (2^2)^{-3}) = 2^{2\times(-3)}=2^{-6}.
Combination example: \bigl(25\div 28\bigr)^{5}\times2^{-5}=(2^{5-8})^{5}\times2^{-5}=2^{-15}\times2^{-5}=2^{-20}=\frac1{2^{20}}.
Solving for unknown exponent:
If ( -3)^{m+1}\times( -3)^5=( -3)^7 then m+1+5=7 \Rightarrow m=1.
Illustrative simplifications (selected):
\left(\frac{1}{3}\right)^{-1}\left(\frac12\right)^{-1}\left(\frac14\right)^{-1}\left(\frac23\right)^{-2}\div\left(\frac23\right)^{-1} ultimately collapses to \frac1{16} after systematic use of product & quotient rules.
\bigl(\frac58\bigr)^{-7}\times\bigl(\frac85\bigr)^{-5}=(\frac58)^{-7+( -5)}=(\frac58)^{-12}=(\frac85)^{12} → intermediate steps illustrate base flipping.
Goal: write any number as a\times10^{k} where 1\le a<10 and k is an integer.
Procedure for small numbers (decimal <1):
Move decimal right until a single non-zero digit remains on the left.
Number of moves =k; assign negative sign: 10^{-k}.
Example: 0.000007 = 7\times10^{-6}.
Example: 0.0016 = 1.6\times10^{-3} (thickness of paper).
Procedure for large numbers (>10):
Move decimal left until only one digit precedes the decimal.
Number of moves =k; exponent is positive.
Example: 150\,000\,000\,000 = 1.5\times10^{11} (distance Earth-Sun).
Converting back to usual form: multiply by 10^k or move decimal k places.
Selected facts and their scientific notation (students instructed to complete table):
Distance Earth–Sun =1.496\times10^{11}\,\text{m}.
Speed of light \approx3.0\times10^{8}\,\text{m/s}.
Average Red Blood Cell diameter =7\times10^{-6}\,\text{m}.
Plant cell size =1.275\times10^{-5}\,\text{m}.
Thickness of human hair =(5\text{ to }10)\times10^{-3}\,\text{cm}.
Distance Earth–Moon =3.84467\times10^{8}\,\text{m}.
Radius of Sun =6.95\times10^{5}\,\text{km}.
Wire on a computer chip =3\times10^{-6}\,\text{m}.
Students identify which are “very large” (positive exponent) vs. “very small” (negative exponent).
Division (ratios):
Diameter Sun =1.4\times10^{9}; Earth =1.2756\times10^{7}.
\frac{1.4\times10^{9}}{1.2756\times10^{7}} \approx 100 → the Sun is ~100× wider.
Ratio of tiny lengths:
Red blood cell vs. plant cell → \approx0.5 (red cell half the size).
Addition / Subtraction: First match exponents.
Total mass Earth + Moon: 5.97\times10^{24}+7.35\times10^{22}=604.35\times10^{22}\,\text{kg}.
Distance Sun–Moon during solar eclipse:
1.496\times10^{11} - 3.84\times10^{8} = 1.49216\times10^{11}\,\text{m} (after aligning exponents).
Reciprocal rule: a^{-m}=\frac1{a^{m}}.
Fundamental identities work for negative, positive, or zero exponents (except base 0 where undefined).
Zero exponent gives 1 for any non-zero base.
Even powers of -1 equal 1; odd powers equal -1.
Scientific notation creates manageable numbers and preserves significant digits.
Evaluate: 3^{-2},\;( -4)^{-2},\;\left(\frac12\right)^{-5}.
Simplify to positive exponents:
( -4)^5\div( -4)^8
\left(\frac12\right)^{3} (convert if given negative exponent)
\left( -\frac34\right)^{5}\times\left(\frac34\right)^{3}, etc.
Write in standard form: 0.000000564,\;0.0000021,\;21\,600\,000.
Convert to ordinary form: 3.02\times10^{-6},\;4.5\times10^{4},\;5.8\times10^{12}.
Real-world interpretation: compute total thickness of stack with 5 books of 20\,\text{mm} and 5 sheets of 0.016\,\text{mm}—requires adding numbers in different orders of magnitude.
Negative exponents expand the exponent rules to include reciprocals, maintaining consistent algebraic patterns.
Laws of exponents are universally valid for integer exponents and non-zero bases.
Scientific notation (standard form) is an essential tool for science, engineering, and everyday contexts involving extreme scales.
Mastery involves fluent conversion, comparison, and computation using both the algebraic laws and standard-form techniques.