bruh
Yup — here’s your Algebra 2 Identities & Formulas restructured into flashcard-ready format: super clean, categorized, and easy to plug into any app like Anki, Quizlet, Knowt, or Brainscape.
🟦
1. Factoring Formulas & Identities
Q: What is the difference of squares formula?
A: a^2 - b^2 = (a - b)(a + b)
Q: What is the perfect square trinomial formula for a^2 + 2ab + b^2?
A: a^2 + 2ab + b^2 = (a + b)^2
Q: What is the perfect square trinomial formula for a^2 - 2ab + b^2?
A: a^2 - 2ab + b^2 = (a - b)^2
Q: What is the sum of cubes formula?
A: a^3 + b^3 = (a + b)(a^2 - ab + b^2)
Q: What is the difference of cubes formula?
A: a^3 - b^3 = (a - b)(a^2 + ab + b^2)
Q: How do you factor by grouping?
A: Group like terms:
Example: ax + ay + bx + by = a(x + y) + b(x + y) = (a + b)(x + y)
🟨
2. Quadratic Formulas & Functions
Q: What is the quadratic formula?
A: x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
Q: How do you find the vertex of a parabola in standard form?
A: Use x = \frac{-b}{2a}, then plug in x to get y.
🟩
3. Exponents & Radicals
Q: What is the product rule for exponents?
A: x^a \cdot x^b = x^{a + b}
Q: What is the quotient rule for exponents?
A: \frac{x^a}{x^b} = x^{a - b}
Q: What is the power rule for exponents?
A: (x^a)^b = x^{ab}
Q: What does a negative exponent mean?
A: x^{-a} = \frac{1}{x^a}
Q: What does zero exponent equal?
A: x^0 = 1, as long as x \neq 0
Q: What does a fractional exponent represent?
A: x^{a/b} = \sqrt[b]{x^a} = (\sqrt[b]{x})^a
🟥
4. Logarithms
Q: What is the definition of a logarithm?
A: If b^y = x, then \log_b x = y
Q: What is the product rule for logarithms?
A: \log_b (MN) = \log_b M + \log_b N
Q: What is the quotient rule for logarithms?
A: \log_b \left(\frac{M}{N}\right) = \log_b M - \log_b N
Q: What is the power rule for logarithms?
A: \log_b (M^p) = p \cdot \log_b M
Q: What is the change of base formula?
A: \log_b M = \frac{\log_c M}{\log_c b}
🟪
5. Absolute Value
Q: How do you solve an equation like |ax + b| = c?
A: Solve two cases: ax + b = c or ax + b = -c
Q: How do you solve |ax + b| < c?
A: Convert to compound inequality: -c < ax + b < c
Q: How do you solve |ax + b| > c?
A: Solve two separate cases: ax + b > c or ax + b < -c
🟫
6. Complex Numbers
Q: What is the standard form of a complex number?
A: a + bi
Q: What is i?
A: i = \sqrt{-1} and i^2 = -1
Q: How do you find the absolute value (modulus) of a complex number?
A: |a + bi| = \sqrt{a^2 + b^2}