Chapter 3 – Linear Combinations of Random Variables
Overview
- Chapter focus: Linear combinations of random variables and their impact on expectation (mean), variance and probability calculations.
- Why it matters:
- Real-world metrics often aggregate several independent random quantities (e.g. monthly stock portfolio profit, triathlon time, weight of jars of honey).
- Understanding linear combinations lets us derive overall distributions and associated probabilities instead of analysing each component separately.
Expectation & Variance for Translating/Scaling One Random Variable
- Translation by constant b
- E\,(X+b)=E\,(X)+b
- \operatorname{Var}\,(X+b)=\operatorname{Var}\,(X)
- Scaling by constant a
- E\,(aX)=a\,E\,(X)
- \operatorname{Var}\,(aX)=a^{2}\,\operatorname{Var}\,(X)
- Combined rule (Key Point 3.3):
E\,(aX+b)=a\,E\,(X)+b
\operatorname{Var}\,(aX+b)=a^{2}\,\operatorname{Var}\,(X)
Illustrative Dice Examples (Section 3.1)
- Xing’s die values: {1,1,2,2,2,4}
- E\,(X)=2; \operatorname{Var}\,(X)=1
- Yaffa’s die values: {4,4,5,5,5,7}=X+3
- E\,(Y)=E\,(X)+3=5
- \operatorname{Var}\,(Y)=\operatorname{Var}\,(X)=1 (shift does not alter variance)
- Quenby’s die values: {2,2,4,4,4,8}=2X
- E\,(Q)=2E\,(X)=4
- \operatorname{Var}\,(Q)=4\operatorname{Var}\,(X)=4 (variance quadruples because a^{2}=4)
- Exploratory Tasks: add/subtract constants to Mo’s die {0,0,1,1,1,3} or create a rule like 3X+1 to confirm general results.
Worked Example 3.1 (Table → 2X+3)
- Given discrete P(X) table, first compute raw E(X)=4 and \operatorname{Var}(X)=3.8.
- Then: E(2X+3)=2\times4+3=11
- \operatorname{Var}(2X+3)=4\times3.8=15.2
Binomial Link (Worked Example 3.2)
- For X\sim B(3,\tfrac12) : E(X)=1.5, \operatorname{Var}(X)=0.75.
- Same rules apply: E(2X+1)=2(1.5)+1=4, \operatorname{Var}(2X+1)=4(0.75)=3.
Linear Combinations of Two Independent RVs (Key Point 3.4)
- For independent X,\,Y:
E\,(X+Y)=E\,(X)+E\,(Y)
\operatorname{Var}\,(X+Y)=\operatorname{Var}\,(X)+\operatorname{Var}\,(Y) - Difference: E\,(X-Y)=E\,(X)-E\,(Y) but variance still adds:
\operatorname{Var}\,(X-Y)=\operatorname{Var}\,(X)+\operatorname{Var}\,(Y)
Multiples Before Summation (Key Point 3.5)
- For constants a,b and independent X,Y:
E\,(aX+bY)=aE\,(X)+bE\,(Y)
\operatorname{Var}\,(aX+bY)=a^{2}\operatorname{Var}\,(X)+b^{2}\operatorname{Var}\,(Y) - Extends to any finite sum of independent variables.
Dice Illustration (Green vs Blue tetrahedral dice)
- Green G: E=\tfrac43, \operatorname{Var}=\tfrac{11}{16}
- Blue B: E=\tfrac32, \operatorname{Var}=\tfrac14
- Sum W=G+B → E(W)=\tfrac14+\tfrac32=\tfrac{7}{4}, \operatorname{Var}(W)=\tfrac{15}{16} (matches explicit enumerated distribution).
Scaled Combination Example
- If we redefine D=2G+3B then:
- E(D)=2E(G)+3E(B)=2(\tfrac43)+3(\tfrac32)=8
- \operatorname{Var}(D)=4\,\tfrac{11}{16}+9\,\tfrac14=5 (again matches table).
Distinguishing 2X vs X1+X2
- 2X: double a single observation (same sample) → variance 4\operatorname{Var}(X).
- X1+X2: sum of two independent observations → variance 2\operatorname{Var}(X).
- Example with Xing’s die validates:
E(2X)=4, \operatorname{Var}(2X)=4 vs
E(X1+X2)=4, \operatorname{Var}(X1+X2)=2.
Normal Distributions (Key Point 3.6)
- If X\sim N(\mu,\sigma^{2}) then any linear form aX+b\sim N(a\mu+b,\,a^{2}\sigma^{2}).
- If independent X\sim N(\mu1,\sigma1^{2}) and Y\sim N(\mu2,\sigma2^{2}) then aX+bY\sim N(a\mu1+b\mu2,\,a^{2}\sigma1^{2}+b^{2}\sigma2^{2}).
Normal Examples
- Four Thrift batteries T\sim N(7,2.3^{2}) → Sum S has
E(S)=28, \operatorname{Var}(S)=4(2.3^{2})=21.16, S\sim N(28,21.16).
Probability P(S>30)=0.332. - Large vs small rice bags: Y\sim N(6.6,0.4^{2}), X\sim N(2.1,0.2^{2}).
Want P(Y>3X). Define Z=Y-3X\sim N(0.3,0.52) then P(Z>0)=0.661. - Worktop thickness:
- Top only: 37+1\Rightarrow N(38,0.09).
- Top & bottom: 37+1+1\Rightarrow N(39,0.0902).
- Gift package: Total mass 3S+T\sim N(240,13^{2}), cheap-rate probability \approx0.779 for mass <250 g.
Poisson Combinations (Key Point 3.7)
- Independent X\sim \operatorname{Po}(\lambda), Y\sim \operatorname{Po}(\mu) ⇒ X+Y\sim \operatorname{Po}(\lambda+\mu).
- Important: only sums preserve Poisson; differences or scaling do not stay Poisson.
Rescue-centre Story
- Lions L\sim\operatorname{Po}(5), Tigers T\sim\operatorname{Po}(3) → Total A=L+T\sim\operatorname{Po}(8).
- Probability of rescuing exactly 2 animals: P(A=2)=e^{-8}\dfrac{8^{2}}{2!}=0.0107 (far quicker than enumerating each lion/tiger combination).
Text-message Example
- Josh \lambda=3.2, Reuben \lambda=2.5 ⇒ T\sim\operatorname{Po}(5.7).
P(T>5)=1-P(T\le4)=0.327.
Non-Poisson after Linear Ops
- If T=2X-Y where X\sim\operatorname{Po}(2.4),\,Y\sim\operatorname{Po}(3.6):
- E(T)=1.2, \operatorname{Var}(T)=13.2.
- Since mean ≠ variance, T is not Poisson.
Ethical/Practical Implications & Real-World Links
- Finance: Portfolio profit as sum of independent share returns.
- Manufacturing: Jar of honey weight = jar + honey + lid; tolerance analysis uses variance formulas.
- Sports: Triathlon or relay times are sums of event times; probability of finishing under target uses normal combination.
- Quality control: Worktop thickness, rice packages, and soaps rely on aggregated normal models for compliance thresholds.
- Communication planning: Text-message Poisson combo informs network capacity.
Connections to Prior Learning
- Relies on discrete expectation/variance (P&S 1 Chapters 6–7).
- Uses Binomial, Poisson, Normal models from earlier chapters and coursebooks.
- Standardisation z=\dfrac{x-\mu}{\sigma} remains foundational for probability lookup.
- Single RV, constants a,b:
- E(aX+b)=aE(X)+b
- \operatorname{Var}(aX+b)=a^{2}\operatorname{Var}(X)
- Independent X,Y:
- E(aX+bY)=aE(X)+bE(Y)
- \operatorname{Var}(aX+bY)=a^{2}\operatorname{Var}(X)+b^{2}\operatorname{Var}(Y)
- Normal closure:
- X\sim N(\mu,\sigma^{2})\Rightarrow aX+b\sim N(a\mu+b,a^{2}\sigma^{2})
- X,Y independent normals ⇒ aX+bY also normal.
- Poisson closure:
- X\sim \operatorname{Po}(\lambda),\,Y\sim \operatorname{Po}(\mu) (independent) ⇒ X+Y\sim \operatorname{Po}(\lambda+\mu).
Worked-Example Shortcuts & Tips
- When summing n identical independent RVs X:
E\,(\text{sum})=nE(X), \operatorname{Var}(\text{sum})=n\operatorname{Var}(X). - For differences, variance always adds: \operatorname{Var}(X-Y)=\operatorname{Var}(X)+\operatorname{Var}(Y).
- Use standardisation for normal probabilities:
P(X>k)=1-\Phi\Big(\dfrac{k-\mu}{\sigma}\Big). - For Poisson ‘greater than’, compute complement with cumulative sum of small k values to reduce computations.
Worked & Exercise References
- Exercise sets 3A–3D reinforce computing expectations & variances, distinguishing 2X vs X1+X2, normal combination probabilities, Poisson sums, and practical conversions (°C→°F).
- End-of-chapter review questions apply concepts to temperatures, egg boxes, triathlon times, cycling hire cost, mining value, etc.