Radicals and Rational Exponents
Square Roots: Definition and Evaluation
- Objective: Define and evaluate square roots, focusing on their simplification and relation to radicals.
- Emphasis on Principal Square Root: Only the positive solution is considered.
Properties of Square Roots
- Terminology:
- Radical: The symbol indicating a root.
- Radicand: The quantity under the radical.
- When the radicand is a perfect square (e.g., x^2), the result is the absolute value of the number |x|, ensuring a non-negative result.
- If the square is outside the radical, i.e., \sqrt{x}^2, then the result is x, given that x \geq 0.
- Solving Equations: For x^2 = a, the solution is x = \pm\sqrt{a}.
Examples of Square Root Simplification
- \sqrt{121} = 11 (Principal root)
- \sqrt{\frac{25}{81}} = \frac{5}{9}
- \sqrt{\frac{16}{169}} = \frac{4}{13}
Properties for Separating Square Roots
- \sqrt{AB} = \sqrt{A} \cdot \sqrt{B} if A and B are non-negative.
- Complex Numbers: Introduction to i = \sqrt{-1}.
- \sqrt{\frac{A}{B}} = \frac{\sqrt{A}}{\sqrt{B}} if A and B are non-negative.
Square Root Simplification Examples
- \sqrt{117} = \sqrt{9 \cdot 13} = \sqrt{9} \cdot \sqrt{13} = 3\sqrt{13}
- \sqrt{6} \cdot \sqrt{12} = \sqrt{72} = \sqrt{36 \cdot 2} = 6\sqrt{2}
- \sqrt{48x^2} = \sqrt{16 \cdot 3 \cdot x^2} = 4\sqrt{3}|x| (Absolute value needed because the value of x is not specified as non-negative).
- \frac{\sqrt{36}}{\sqrt{3}} = \sqrt{\frac{36}{3}} = \sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3}
- Simplifying \sqrt{\frac{25y^3}{9x^2}}:
- = \frac{\sqrt{25y^3}}{\sqrt{9x^2}} = \frac{5\sqrt{y^2 \cdot y}}{3|x|} = \frac{5y\sqrt{y}}{3|x|}, given y \geq 0.
The nth Root
- If A is positive, the nth root exists.
- Example: Cube root of 8 (\sqrt[3]{8} = 2).
- If A is negative:
- If n is odd, the nth root exists.
- Example: Cube root of -8 (\sqrt[3]{-8} = -2).
- If n is even, the nth root is not a real number.
- Example: Fourth root of -16 (DNE).
- If A is zero, the nth root is zero.
Examples: Evaluating nth Roots
- \sqrt[3]{27} = 3
- \sqrt[3]{-64} = -4
- \sqrt[4]{16} = 2 (Principal root)
- (\sqrt[4]{-3})^4 = \sqrt[4]{81} = 3
*Note: If the expression was written as \sqrt[4]{(-3)^4}, then simplifying this expression will result in *DNE* because even root doesn't exist with a negative number.* - \sqrt[6]{-64} – Does Not Exist (DNE).
Simplifying nth Roots
- If n is odd, \sqrt[n]{a^n} = a
- If n is even, \sqrt[n]{a^n} = |a| (Principal root).
Properties of nth Roots
- For odd roots, separation is always possible, regardless of the sign.
- For even roots, separation, \sqrt[n]{AB} = \sqrt[n]{A} \cdot \sqrt[n]{B}, and division, \sqrt[n]{\frac{A}{B}} = \frac{\sqrt[n]{A}}{\sqrt[n]{B}}, requires A and B to be positive.
- Nested Radicals: \sqrt[m]{\sqrt[n]{a}} = \sqrt[m \cdot n]{a}
Examples of Simplifying nth Roots
- \sqrt[4 \cdot 3]{7} = \sqrt[12]{7}
- \sqrt[3]{135} = \sqrt[3]{27 \cdot 5} = 3\sqrt[3]{5}
- \frac{\sqrt[3]{5}}{\sqrt[3]{64}} = \frac{\sqrt[3]{5}}{4}
- \sqrt[4]{162a^4} = \sqrt[4]{81 \cdot 2 \cdot a^4} = 3 \sqrt[4]{2} |a|
Addition and Subtraction of Radicals
- Combine like terms only.
- Example: 2\sqrt{45} + 7\sqrt{20}
- = 2\sqrt{9 \cdot 5} + 7\sqrt{4 \cdot 5}
- = 2(3\sqrt{5}) + 7(2\sqrt{5})
- = 6\sqrt{5} + 14\sqrt{5} = 20\sqrt{5}
- Example: 5\sqrt[3]{8x} - 3\sqrt[3]{27x}
- = 5\sqrt[3]{8 \cdot x} - 3\sqrt[3]{27 \cdot x}
- = 5(2\sqrt[3]{x}) - 3(3\sqrt[3]{x})
- = 10\sqrt[3]{10x} - 9\sqrt[3]{10x} = \sqrt[3]{10x}
Rational Exponents and Radicals
- Definition: a^{\frac{1}{n}} = \sqrt[n]{a}
- Rules for Rational Exponents follow nth root rules.
- a^{\frac{m}{n}} = (\sqrt[n]{a})^m = \sqrt[n]{a^m}
Examples: Rational Exponents
- 8^{\frac{2}{3}} = (\sqrt[3]{8})^2 = 2^2 = 4
- (-16)^{\frac{5}{2}} – Does Not Exist (DNE).
- (\sqrt{100})^{-3} = 10^{-3} = \frac{1}{1000}
- (-64)^{\frac{2}{6}} – Cannot be solved, DNE.