Z{in} = Z0 \frac{ZL + jZ0 \tan(\beta l)}{Z0 + jZL \tan(\beta l)}
\lambda = \frac{c}{f} = \frac{3 \times 10^8}{1 \times 10^9} = 0.3 \text{m}
\beta = \frac{2\pi}{\lambda}
\beta = \frac{2\pi}{\lambda} = \frac{2\pi}{0.375} = 20.94 \text{ rad/m}
\beta l = 20.94 \times 0.375=7.85\text{rad}
\Gamma_L= -0.2-j0.4
Z_{in}= 100 + j 100 \Omega
Z_L= 50 - j 50\Omega
\beta = \frac{2\pi}{\lambda}
Length of line = 75mm = 0.075m
\beta l = 1.5707 \text{rad}
\Gamma_L= 0.447 \angle -26.6
\begin{aligned} Z{i n} &=Z{0} \frac{Z{L}+j Z{0} \tan (\beta l)}{Z{0}+j Z{L} \tan (\beta l)} \ &=100 \frac{100+j 100+j 100 \tan (1.5707)}{100+j(100+j 100) \tan (1.5707)} \ &=50-j 50 \Omega \end{aligned}
\begin{aligned} V{i} &=V{g} \frac{Z{i n}}{Z{g}+Z_{i n}} \ &=5 \frac{50-j 50}{100+50-j 50} \ &=2.24 \angle-26.6 \text{degrees} \end{aligned}
Input current: \tilde{I_i}= 0.032 \angle 18.4
Load voltage: V_L= 3.16 \angle 71.6 \text{degrees}