NE

PHY 102 – Thermal Physics Vocabulary

Course Overview

  • PHY 102 (M) – Thermal Physics, Sound and Optics (3 Units)
    • Core areas announced on p. 1
    • Thermal Physics
      • Zeroth, First & Second Laws of Thermodynamics
      • Temperature, calorimetry, heat transfer, change of state, critical points
      • Gas laws, kinetic theory, black–body radiation
    • Sound
      • Production of sound by vibrating solids and air columns
      • Speed of sound in solids, liquids, gases
      • Intensity, pitch, quality; ear response; interference; Doppler effect
    • Optics
      • Reflection, absorption, spherical mirrors, thin lenses, combinations & aberrations
      • Optical instruments; resolving power of microscopes

Temperature & Zeroth Law of Thermodynamics

  • Human sense of “hot/cold” is qualitative and often misleading (e.g.
    • Tile vs. carpet at same T feels different due to higher heat–transfer rate of tile)
  • Need a quantitative property → temperature
  • Zeroth Law statement
    • If bodies A and B are each in thermal equilibrium with body C, then A and B are in equilibrium with each other → they share a common temperature
  • Consequences
    • Temperature is the property that determines heat-flow direction
    • Two bodies with different T will transfer energy until equilibrium is reached

Thermometers & Temperature Scales

  • Thermometer principle: some physical property changes reproducibly with T
    • Examples: liquid volume, solid dimensions, gas pressure/volume, electrical resistance, colour
  • Absolute (Kelvin) scale
    • Conversion: T_c = T - 273
  • Fahrenheit vs. Celsius
    • Ice point: 32\,^\circ\text F ; steam point: 212\,^\circ\text F
    • Relationship: TF = \frac{9}{5}TC + 32
  • Only Kelvin has a true zero; any formula involving ratios of temperatures must use kelvins
  • Example conversion
    • 50\,^\circ\text F \Rightarrow 10\,^\circ\text C \text{ and } 283\,\text K

Thermal Expansion

  • Linear expansion coefficient \alpha
    • Definition: \alpha = \frac{\Delta L}{L_i\,\Delta T}
    • Useful form: \Delta L = \alpha Li \Delta T = \alpha Li (Tf - Ti)
  • Area & volume expansion (isotropic solids)
    • Area: \Delta A = 2\alpha A_i \Delta T
    • Volume: \Delta V = \beta V_i \Delta T where \beta = 3\alpha
  • Example (railroad track)
    • (a) Find new length at 40\,^\circ\text C for a 30.000 m steel rail starting at 0\,^\circ\text C
    • (b) If clamped, quantify thermal stress (not numerically worked in transcript)

Quantity of Heat & Specific Heat Capacity

  • Heat Q is energy transferred due to \Delta T between system & surroundings
  • For a single phase: Q = mc\,(T - T_0)
    • c = specific heat capacity (J kg^{-1}\,^\circ\text C^{-1})
  • Definition of c
    • c = \dfrac{Q}{m (T - T_0)}; low c ⇒ good thermal conductor; water chosen for engine cooling due to high c
  • Example 1 (iron vat)
    • m = 20\,\text{kg},\; c_{\text{Fe}} = 450\,\text{J kg}^{-1}\,^\circ\text C^{-1}
    • \Delta T = 80\,^\circ\text C ⇒ Q = 7.2\times10^5\,\text J (720 kJ)
  • Conservation of energy (calorimetry)
    • In isolated system: \text{heat lost} = \text{heat gained}

Calorimetry Examples

  • Example 2 (tea + glass cup)
    • Tea: m=0.20\,\text{kg},\; c=4186\,\text{J kg}^{-1}\,^\circ\text C^{-1},\; T_i=95\,^\circ\text C
    • Glass cup: m=0.15\,\text{kg},\; c=840\,\text{J kg}^{-1}\,^\circ\text C^{-1},\; T_i=25\,^\circ\text C
    • Solve mt ct(95-T)=mc cc(T-25) ⇒ T \approx 89\,^\circ\text C
  • Example 3 (specific heat of alloy)
    • Alloy: m=0.150\,\text{kg},\; T_i=540\,^\circ\text C
    • Water: 0.400\,\text{kg} at 10\,^\circ\text C
    • Aluminium calorimeter: 0.200\,\text{kg} at 10\,^\circ\text C
    • Equilibrium T_f=30.5\,^\circ\text C
    • Apply ms cs \Delta Ts = mw cw \Delta Tw + m{Al} c{Al} \Delta T{Al} ⇒ cs \approx 500\,\text{J kg}^{-1}\,^\circ\text C^{-1}

Phase Change & Latent Heat

  • Specific latent heat L: energy per unit mass for a phase change at constant T
    • Fusion (solid↔liquid): L_f
    • Vaporization (liquid↔gas): Lv (greater than Lf because both internal + external work)
  • Q = mL \;\Longrightarrow\; L = \dfrac{Q}{m}
  • Example 4 (refrigerator)
    • Remove heat from 1.5 kg water at 20\,^\circ\text C to form ice at -12\,^\circ\text C
    • Q = m cw(20) + mLf + m c_{ice}(12) \approx 6.6\times10^5\,\text J (660 kJ)
  • Heating curve notation (ice → water → steam)
    • Q1 = m c{ice}\,10; Q2 = m Lf; Q3 = m cw\,100; Q4 = m Lv

Newton’s Law of Cooling

  • Rate proportional to excess temperature
    • \frac{dQ}{dt} \propto -(T - T_0)
    • \frac{dQ}{dt} = -k (T - T_0)

Heat-Transfer Mechanisms

  • Conduction
    • Microscopic energy flow through matter, predominates in solids/metals
    • Fourier law: \frac{dQ}{dt} = -kA \frac{(T1 - T2)}{l}
    • k = thermal conductivity (large k ⇒ good conductor)
    • Example 5 (window)
    • Glass pane A = 3.0\,\text{m}^2,\; l = 3.2\,\text{mm},\; \Delta T = 1\,^\circ\text C
    • k_{glass} = 0.84\,\text{J s}^{-1}\,\text{m}^{-1\,^\circ\text C}^{-1} ⇒ \dot Q \approx 790\,\text W
  • Convection
    • Bulk movement of fluid; much faster than conduction in fluids
    • Newton’s cooling analogue: \frac{dQ}{dt} = hA (T - T_0) with h = convection coefficient
  • Radiation
    • Does not require medium; energy via electromagnetic waves
    • Stefan–Boltzmann law: \frac{dQ}{dt} = e\sigma A T^4
    • Net exchange between body (T$1$) and surroundings (T$2$):
      \frac{dQ}{dt} = e\sigma A (T1^4 - T2^4)
    • Example 6 (athlete)
    • A=1.5\,\text{m}^2,\; e=0.70,\; T{skin}=307\,\text K,\; T{wall}=288\,\text K
    • \dot Q \approx 120\,\text W

Kinetic Theory of Gases

  • Assumptions
    1. Large number N of identical molecules, each mass m, random motion
    2. Mean separation ≫ molecule diameter ⇒ volume mostly empty
    3. Molecules obey classical mechanics; interact only via collisions
    4. Collisions with walls and each other are perfectly elastic
  • Derivation highlights (cube side l)
    • Single molecule momentum change on wall: \Delta (mvx)=2mvx
    • Time between successive hits: \Delta t = \frac{2l}{v_x}
    • Force by one molecule: F = \frac{m v_x^2}{l}
    • Extend to N molecules, use average \overline{vx^2}; isotropy ⇒ \overline{vx^2}=\overline{vy^2}=\overline{vz^2}
    • v{rms}^2 = \overline{v^2} = 3\overline{vx^2}
    • Pressure: P = \frac{1}{3}\frac{N m \overline{v^2}}{V}
    • Combine with ideal-gas law PV = NkT ⇒
      \frac{1}{2} m \overline{v^2} = \frac{3}{2} kT
  • Root-mean-square speed
    • v_{rms}=\sqrt{\overline{v^2}} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3RT}{M}} (M = molar mass)
  • Example 7: T=37\,^\circ\text C ⇒ \overline{KE} = \tfrac{3}{2}kT \approx 6.4\times10^{-21}\,\text J per molecule

Laws of Thermodynamics

Fundamental Concepts

  • System: region/object under study
    • Closed: no mass flow; Open: mass can cross boundary
    • Isolated: no energy or mass exchange
  • Internal energy U: microscopic energy content
  • Heat (Q): energy transfer driven by \Delta T
  • Work (W): energy transfer not driven by \Delta T (e.g.
    PdV mechanical work)

First Law (Energy conservation)

  • \Delta Q = \Delta U + \Delta W
  • Sign conventions (as used in transcript)
    • Q>0: heat added to system; Q<0: heat lost
    • W>0: work done by system; W<0: work done on system
  • \Delta W = P \Delta V for quasi-static volume change
  • Example 8
    • (a) Q=+2500\,\text J,\; W=-1800\,\text J ⇒ \Delta U = 4300\,\text J
    • (b) Q=+2500\,\text J,\; W=+1800\,\text J ⇒ \Delta U = 700\,\text J

Special Thermodynamic Processes

  • Isothermal (\Delta T=0) for ideal gas
    • \Delta U=0 ⇒ \Delta Q = \Delta W
    • \Delta Q = P1V1 \ln!\left(\dfrac{V2}{V1}\right)
  • Adiabatic (\Delta Q=0)
    • 0 = \Delta U + \Delta W ⇒ work comes at expense of internal energy
  • Isochoric / isovolumic (\Delta V=0)
    • \Delta W=0 ⇒ \Delta Q = \Delta U
  • Isobaric (P=\text{const})
    • Not explicitly derived, but work = P\Delta V

Second Law (directionality)

  • Heat flows spontaneously from hot ⇒ cold, never cold ⇒ hot without external work
  • Equivalent interpretations (not yet detailed: entropy, heat engines, etc.)

Additional Topics Mentioned (Preview)

  • Critical points (phase diagrams)
  • Black-body radiation
    • Planck law, Wien displacement, Stefan–Boltzmann already introduced via radiation section
  • Sound
    • Vibrations of solids/air columns; speed formulas v=\sqrt{Y/\rho} (solids), v=\sqrt{B/\rho} (fluids)
    • Intensity I = P/A; decibel scale; interference & beats; Doppler effect f' = f\left(\dfrac{v\pm vo}{v\mp vs}\right)
  • Optics
    • Reflection \thetai = \thetar; mirrors \dfrac{1}{f}=\dfrac{1}{do}+\dfrac{1}{di}
    • Thin-lens equation, combination of lenses \dfrac{1}{f{eq}}=\sum \dfrac{1}{fi}
    • Aberrations: spherical, chromatic
    • Resolving power d_{min}=1.22\dfrac{\lambda}{2NA} for microscopes (Rayleigh criterion)
  • These sections are announced in syllabus and will be covered later; included for conceptual continuity.

Ethical & Practical Implications

  • Engineering design must account for thermal expansion (e.g.
    rail gaps, bridge joints)
  • High specific heat of water crucial for climate regulation & biological temperature stability
  • Refrigeration and air-conditioning rely on large L_v for efficient heat removal
  • Understanding radiative balance fundamental to climate science (Earth–Sun energy budget)
  • Second-law directionality underpins efficiency limits of engines and informs sustainable energy systems