Tour of the Eukaryotic Cell – Vocabulary Flashcards

Components of the Eukaryotic Cell

  • External & Internal Architecture
    • Cell (plasma) membrane – comparable to prokaryotes but embedded in a complex intracellular system.
    • Possible cell wall – composition and presence vary by kingdom.
    • Appendages – flagella or cilia anchored to cytoskeleton.
    • Internal structures – nucleus, membrane‐bound organelles, elaborate cytoskeleton.

Cell Wall

  • Function
    • Provides mechanical strength & rigidity.
    • Counters \Delta \Psi_{osmotic} (osmotic pressure changes).
  • Distribution
    • Present in plants, fungi, some protists.
    • Absent in animal cells.
  • Composition by lineage
    • Plantae: cellulose microfibrils with large openings ⇒ wall is porous and non-selective.
    • Fungi: chitin + additional polysaccharides.

Plasma (Cell) Membrane

  • Chemical make-up: phospholipid bilayer + diverse integral/peripheral proteins.
  • Primary role: selectively permeable barrier.
    • Passive diffusion of small neutrals \text{H}2\text{O},\;\text{CO}2,\;\text{O}_2.
    • Larger / polar solutes require protein transporters or bulk transport.
  • Localization
    • Sole outer boundary in animals & many protists.
    • Lies just internal to wall in plants/fungi.

Bulk Membrane Traffic

  • Exocytosis – vesicle fusion expels secretory proteins or wastes into extracellular milieu.
  • Endocytosis – plasma membrane invaginates, pinches into a vacuole. Types:
    • Phagocytosis – ‘cell eating’ of particles/cells.
    • Pinocytosis – ‘cell drinking’ of extracellular fluid.
  • Central challenge: import/export large items without forming catastrophic holes.

Vacuoles

  • Fluid‐filled membrane sacs; function diverges by kingdom.
    • Animal cells – numerous, small; shuttle material internally or from plasma membrane.
    • Plant tonoplast – single, dominant vacuole:
    • Maintains turgor & osmotic balance.
    • Recycles macromolecules.
    • Sequesters toxic ions/molecules.

Lysosomes

  • Specialized vacuoles packed with hydrolytic enzymes (optimal at acidic pH).
  • Execute intracellular digestion & recycling via hydrolysis reactions.
  • Present in both animal and plant cells.

Microbodies (Peroxisomes)

  • Single-membrane vesicles containing oxidative enzymes.
  • Abundant in hepatocytes (liver).
  • Oxidize amino acids, fatty acids, alcohol → by-product \text{H}2\text{O}2.
  • Catalase converts \text{H}2\text{O}2 \rightarrow \text{H}2\text{O} + \tfrac12\text{O}2.

Cytosol vs. Cytoplasm

  • Cytosol – aqueous matrix of nutrients, ions, soluble proteins surrounding organelles.
  • Cytoplasm – cytosol + every component between nuclear envelope & plasma membrane.
  • In casual usage the terms often interchange.

Nucleus

  • Central command center; stores genetic blueprint (chromatin = DNA + histones).
  • Double membrane nuclear envelope with nuclear pores ⇒ regulated trafficking (e.g., mRNA export, protein import).
  • Nucleolus – rRNA synthesis & ribosome subunit assembly.

Ribosomes

  • Non-membranous ribonucleoprotein complexes translating mRNA → polypeptide.
    • Free in cytosol – synthesize cytosolic proteins.
    • Bound to rough ER – synthesize secretory / membrane proteins.
  • Composition: rRNA + proteins; two subunits.
    • Prokaryotic: 70\,\text{S} = 50\,\text{S} + 30\,\text{S}.
    • Eukaryotic: 80\,\text{S} = 60\,\text{S} + 40\,\text{S}.
    • rRNA lengths (bases) – Prokaryote 5\text{S}(120),\;16\text{S}(1540),\;23\text{S}(2900); Eukaryote 5\text{S}(120),\;5.8\text{S}(160),\;18\text{S}(1900),\;28\text{S}(4800).

Endomembrane System

  • Continuous or vesicle-linked membranes coordinating protein & lipid traffic.
    • Nuclear envelope
    • ER (Endoplasmic Reticulum)
    • Rough ER – studded with ribosomes; co-translational import, folding, glycosylation, dispatch of secretory proteins.
    • Smooth ER – no ribosomes; lipid/steroid synthesis, ion (Ca^{2+}) storage, detox, vesicle budding.
    • Golgi apparatus – stacked cisternae (‘pancakes’):
    • Cis face (receiving) accepts ER vesicles.
    • Trans face (shipping) dispatches processed proteins/lipids to lysosome, membrane, or exocytosis routes.
    • Lysosomes – degradative endpoint.
    • Transport vesicles – shuttle cargo; mediate protein trafficking percentage referenced: 15\% of some cellular budget (slide context).

Energy-Converting Organelles

  • Mitochondria – ‘powerhouse’; hosts Krebs cycle & electron transport chain, generating \text{ATP} from organic substrates.
  • Chloroplasts (plants) – photosynthetic energy capture; thylakoid stacks with chlorophyll convert photons → glucose → ATP.
  • Leucoplasts – non-pigmented plastids specialized for starch storage.

Endosymbiotic Theory

  • Step 1: Ancestor eukaryote engulfed aerobic bacterium ⇒ proto-mitochondrion (ancestral heterotroph).
  • Step 2: Cell with mitochondrion engulfed photosynthetic bacterium ⇒ proto-chloroplast (ancestral photosynthesizer).
  • Supporting Evidence
    • Own DNA (often circular).
    • Independent binary-fission style replication.
    • 70S ribosomes, bacterial size.
    • Double membranes.
    • Organelle size ≈ modern bacteria.
  • Criticisms / Open Questions
    • Some mitochondria possess linear DNA with telomeres (eukaryote-like).
    • Many mitochondrial proteins encoded in nucleus ⇒ mechanism of gene transfer not fully resolved.
    • 3-D ultrastructure of mitochondria ≠ simple spheres; networked tubules challenge ‘bacterial-like’ view.

Cytoskeleton & Motility

  • Protein fiber triad
    • Microtubules – \alpha/\beta-tubulin cylinders; organelle tracks; mitotic spindle.
    • Actin (microfilaments) – cell cortex, motility, cytokinesis.
    • Intermediate filaments – tensile stability.
  • Centrioles – microtubule triplet barrels; organize spindle in animals.
  • Cilia & Flagella
    • 9+2 microtubule axoneme; dynein-powered bending.
    • Flagella: long, undulatory; found chiefly in sperm.
    • Cilia: short, numerous; sweep mucus in respiratory epithelium.
  • Comparison with Bacterial Flagellum
    • Bacterial: helical filament rotated 360^{\circ} by basal motor.
    • Eukaryotic: bending wave/whip motion.

Comparative Overview

  • Plants vs. Animals
    • Cell wall (cellulose) & large central vacuole, chloroplasts, plasmodesmata – plants only.
    • Centrioles, lysosomes prominent in animals.
  • Eukaryotes vs. Prokaryotes
    • DNA packaging: linear chromosomes in membrane-bound nucleus vs. circular nucleoid.
    • Ribosome size (80S vs. 70S).
    • Compartmentalization via endomembranes absent in bacteria.

Analogy Exercise (Teaching Activity)

  • Students asked to design a creative analogy for the eukaryotic cell (e.g., ‘city’ model where ribosomes = factories, Golgi = post office, mitochondria = power plants).
  • Purpose: reinforce functional relationships by mapping biology onto familiar systems.