Pre Calculus Study Notes
Real Numbers
🔹 Concept
All numbers that can be represented on a number line.
Categories:
Natural (ℕ): 1, 2, 3…
Whole: 0, 1, 2, 3…
Integers (ℤ): …−2, −1, 0, 1, 2…
Rational (ℚ): Can be written as a fraction (⅔, −4, 0.75)
Irrational: Non-repeating, non-terminating (√2, π)
🔹 Properties
Commutative: a + b = b + a; ab = ba
Associative: (a + b) + c = a + (b + c)
Distributive: a(b + c) = ab + ac
Identity: a + 0 = a; a × 1 = a
Inverse: a + (−a) = 0; a × (1/a) = 1 (a ≠ 0)
🔹 Example
Simplify: 3(4 − 7) + 5² − 8 ÷ 2
→ 3(−3) + 25 − 4
→ −9 + 25 − 4 = 12
Exponents
🔹 Concept
An exponent shows repeated multiplication:
an=a×a×a×⋯×aa^n = a × a × a × \dots × aan=a×a×a×⋯×a (n times)
🔹 Rules
Product Rule: am×an=am+na^m × a^n = a^{m+n}am×an=am+n
Quotient Rule: aman=am−n\frac{a^m}{a^n} = a^{m−n}anam=am−n
Power Rule: (am)n=amn(a^m)^n = a^{mn}(am)n=amn
Zero Exponent: a0=1a^0 = 1a0=1 (a ≠ 0)
Negative Exponent: a−n=1ana^{−n} = \frac{1}{a^n}a−n=an1
🔹 Example
Simplify: 23×24÷222^3 × 2^4 ÷ 2^223×24÷22
→ 23+4−2=25=322^{3+4−2} = 2^5 = 3223+4−2=25=32 Thus, the final result is confirmed as ( 2^5 = 32 ).
Radicals and Rational Exponents
🔹 Concept
The n-th root of a number is written as an=a1/n\sqrt[n]{a} = a^{1/n}na=a1/n.
Example: 83=2\sqrt[3]{8} = 238=2 and 81/3=28^{1/3} = 281/3=2
🔹 Rules
am/n=amna^{m/n} = \sqrt[n]{a^m}am/n=nam
ab=a×b\sqrt{ab} = \sqrt{a} × \sqrt{b}ab=a×b
ab=ab\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}ba=ba
Rationalize denominators: multiply by a radical that removes roots from the bottom.
🔹 Example
Simplify: 50\sqrt{50}50
→ 25×2=52\sqrt{25×2} = 5\sqrt{2}25×2=52
4⃣ Polynomials
🔹 Concept
An expression made of terms with variables raised to whole-number powers.
General Form:
P(x)=anxn+an−1xn−1+...+a1x+a0P(x) = a_nx^n + a_{n−1}x^{n−1} + ... + a_1x + a_0P(x)=anxn+an−1xn−1+...+a1x+a0
🔹 Terms
Degree: highest exponent
Coefficient: number in front of variable
Constant: term without a variable
🔹 Example
Simplify: (3x² + 2x + 1) + (x² − 4x + 5)
→ 4x2−2x+64x² − 2x + 64x2−2x+6
5⃣ Factoring Polynomials
🔹 Concept
Write a polynomial as a product of simpler factors.
🔹 Common Methods
GCF (Greatest Common Factor)
Example: 6x² + 9x → 3x(2x + 3)Difference of Squares
a2−b2=(a+b)(a−b)a² − b² = (a + b)(a − b)a2−b2=(a+b)(a−b)Trinomials:
x2+bx+c=(x+m)(x+n)x² + bx + c = (x + m)(x + n)x2+bx+c=(x+m)(x+n) where m·n = c and m + n = bGrouping:
Factor pairs of terms.
🔹 Example
Factor: x2+5x+6x² + 5x + 6x2+5x+6
→ (x + 2)(x + 3)
6⃣ Rational Expressions
🔹 Concept
A fraction with polynomials in the numerator and denominator.
🔹 Rules
Simplify: factor and cancel common terms.
Multiply: multiply numerators and denominators.
Divide: multiply by the reciprocal.
Add/Subtract: the common denominator.
🔹 Example
Simplify: x2−9x2−3x\frac{x² − 9}{x² − 3x}x2−3xx2−9
→ (x+3)(x−3)x(x−3)=x+3x\frac{(x + 3)(x − 3)}{x(x − 3)} = \frac{x + 3}{x}x(x−3)(x+3)(x−3)=xx+3
7⃣ The Rectangular Coordinate System & Graphs
🔹 Concept
Coordinate plane has x-axis (horizontal) and y-axis (vertical).
A point is written as (x, y).
🔹 Formulas
Distance: d=(x2−x1)2+(y2−y1)2d = \sqrt{(x₂ − x₁)² + (y₂ − y₁)²}d=(x2−x1)2+(y2−y1)2
Midpoint: M=(x1+x22,y1+y22)M = (\frac{x₁ + x₂}{2}, \frac{y₁ + y₂}{2})M=(2x1+x2,2y1+y2)
Slope: m=y2−y1x2−x1m = \frac{y₂ − y₁}{x₂ − x₁}m=x2−x1y2−y1
🔹 Example
Find slope between (2, 3) and (5, 11):
m=11−35−2=83m = \frac{11 − 3}{5 − 2} = \frac{8}{3}m=5−211−3=38
8⃣ Linear Equations in One Variable
🔹 Concept
Equation of the form ax+b=0ax + b = 0ax+b=0
🔹 Formula
Solve by isolating x: x=−bax = −\frac{b}{a}x=−ab
🔹 Example
Solve: 3x−9=03x − 9 = 03x−9=0
→ 3x=9→x=33x = 9 → x = 33x=9→x=3
9⃣ Complex Numbers
🔹 Concept
Include imaginary numbers (involving i, where i2=−1i² = −1i2=−1).
🔹 Form
a+bia + bia+bi, where a = real part, b = imaginary part.
🔹 Operations
Add/Subtract: combine like terms.
Multiply: use i2=−1i² = −1i2=−1.
Divide: multiply by the conjugate.
🔹 Example
Simplify: (3+2i)(1−4i)(3 + 2i)(1 − 4i)(3+2i)(1−4i)
→ 3−12i+2i−8i2=3−10i+8=11−10i3 − 12i + 2i − 8i² = 3 − 10i + 8 = 11 − 10i3−12i+2i−8i2=3−10i+8=11−10i
🔟 Quadratic Equations
🔹 Concept
Equation of the form ax2+bx+c=0ax² + bx + c = 0ax2+bx+c=0
🔹 Methods to Solve
Factoring
Quadratic Formula:
x=−b±b2−4ac2ax = \frac{−b ± \sqrt{b² − 4ac}}{2a}x=2a−b±b2−4acCompleting the Square
🔹 Example
Solve x2+3x−10=0x² + 3x − 10 = 0x2+3x−10=0
→ Factors: (x + 5)(x − 2) = 0
→ x = −5, 2
11⃣ Other Types of Equations
🔹 Types
Absolute Value: ∣x∣=a→x=±a|x| = a → x = ±a∣x∣=a→x=±a
Radical Equations: isolate the radical and square both sides.
Rational Equations: multiply both sides by the LCD.
Exponential/Logarithmic Equations: Use properties of exponents or logs.
🔹 Example (Absolute Value)
Solve: ∣2x−3∣=5|2x − 3| = 5∣2x−3∣=5
→ 2x − 3 = 5 or 2x − 3 = −5
→ x = 4 or x = −1
🧾 Study Tip Summary
Always simplify first.
Memorize key formulas like the distance formula and quadratic formula.
Practice factoring until it’s automatic.
Check for extraneous solutions (especially with radicals or rationals).
Graph when possible — visuals help memory.
1⃣ Real Numbers
No major formulas here, but you should remember the properties using this phrase:
“Cows Are Dairy In India” → Commutative, Associative, Distributive, Identity, Inverse
✅ Commutative: order changes
✅ Associative: grouping changes
✅ Distributive: multiplication spreads
✅ Identity: 0 (add) or 1 (multiply)
✅ Inverse: undo the operation
⚡ 2⃣ Exponents
💡 Think: “MAD POP NOD” — a phrase for the 6 main rules:
Rule | Formula | Trick to Remember |
---|---|---|
Multiply | am×an=am+na^m × a^n = a^{m+n}am×an=am+n | Add powers when multiplying |
Add | (Power add rule) same base, add exponents | |
Divide | am÷an=am−na^m ÷ a^n = a^{m−n}am÷an=am−n | Subtract powers |
Power of Power | (am)n=amn(a^m)^n = a^{mn}(am)n=amn | Multiply powers |
One | a0=1a^0 = 1a0=1 | Anything to zero = 1 |
Negative | a−n=1/ana^{−n} = 1/a^na−n=1/an | Flip base for negatives |
🧠 Say in your head:
“Multiply → Add, Divide → Subtract, Power → Multiply.”
🌀 3⃣ Radicals & Rational Exponents
Formulas:
an=a1/n\sqrt[n]{a} = a^{1/n}na=a1/n
am/n=amna^{m/n} = \sqrt[n]{a^m}am/n=nam
🧠 Memory Trick:
Think “Fractional exponents flip into roots” — denominator = root, numerator = power.
→ Example: 82/3=(83)2=48^{2/3} = (\sqrt[3]{8})^2 = 482/3=(38)2=4
Also, remember:
“Split radicals apart and rationalize from the bottom up.”
→ ab=ab\sqrt{ab} = \sqrt{a}\sqrt{b}ab=ab
→ Multiply by the radical in the denominator to “rationalize.”
✏ 4⃣ Polynomials
Formula pattern:
P(x)=anxn+...+a0P(x) = a_nx^n + ... + a_0P(x)=anxn+...+a0
🧠 To remember: “Highest power first!”
Always arrange from largest exponent → smallest.
🔹 5⃣ Factoring Polynomials
Core patterns:
GCF: Take out what’s common.
Difference of Squares:
a2−b2=(a+b)(a−b)a^2 − b^2 = (a + b)(a − b)a2−b2=(a+b)(a−b)
Trick: “Same terms, opposite signs.”Trinomials:
x2+bx+c=(x+m)(x+n)x^2 + bx + c = (x + m)(x + n)x2+bx+c=(x+m)(x+n)
Trick: m × n = c and m + n = b
🧠 Remember the chant:
“Multiply to the last, add to the middle!”
➗ 6⃣ Rational Expressions
Formulas:
Simplify → cancel factors
Multiply → top×top, bottom×bottom
Divide → flip the second fraction
Add/Subtract → common denominator first
🧠 Rhyme:
“Flip for divide, keep for times — find a match and cancel lines.”
📉 7⃣ Rectangular Coordinate System
Formulas:
Distance: d=(x2−x1)2+(y2−y1)2d = \sqrt{(x₂−x₁)^2 + (y₂−y₁)^2}d=(x2−x1)2+(y2−y1)2
Midpoint: M=(x1+x22,y1+y22)M = (\frac{x₁ + x₂}{2}, \frac{y₁ + y₂}{2})M=(2x1+x2,2y1+y2)
Slope: m=y2−y1x2−x1m = \frac{y₂−y₁}{x₂−x₁}m=x2−x1y2−y1
🧠 Tricks:
“Distance is Pythagorean” → looks like a² + b² = c².
“Midpoint = middle of x’s, middle of y’s.”
“Slope = rise over run.”
📈 8⃣ Linear Equations
Formula: ax+b=0⇒x=−baax + b = 0 \Rightarrow x = −\frac{b}{a}ax+b=0⇒x=−ab
🧠 Memory Tip:
Move everything except x, then divide by what’s in front of x.
Example: 3x−9=0⇒x=33x−9=0 \Rightarrow x=33x−9=0⇒x=3
⚙ 9⃣ Complex Numbers
Formulas:
i2=−1i^2 = −1i2=−1
i3=−ii^3 = −ii3=−i
i4=1i^4 = 1i4=1
Conjugate: a+bi→a−bia+bi → a−bia+bi→a−bi
Multiply: use i2=−1i^2 = −1i2=−1
Divide: multiply top & bottom by the conjugate.
🧠 Trick:
Remember the i-cycle:
i, −1, −i, 1, (then repeat)
🧩 10⃣ Quadratic Equations
Formula:
x=−b±b2−4ac2ax = \frac{−b ± \sqrt{b^2 − 4ac}}{2a}x=2a−b±b2−4ac
🧠 Song Trick:
Sing it to the tune of “Pop Goes the Weasel”: 🎵
“x equals negative b,
plus or minus the square root,
of b squared minus 4ac,
all over 2a.” 🎵
Also remember:
b2−4acb^2 − 4acb2−4ac is the discriminant
→ If >0 = 2 real roots
→ If 0 = 1 real root
→ If <0 = complex roots
💥 11⃣ Other Equations
Absolute Value: ∣x∣=a→x=±a|x| = a → x = ±a∣x∣=a→x=±a
Radical Equations: isolate root, then square both sides
Rational Equations: multiply both sides by LCD
Exponential: ax=b→x=loga(b)a^x = b → x = \log_a(b)ax=b→x=loga(b)
🧠 Trick:
“Undo the operation last applied.”
If it’s absolute value → split ±
If it’s a square root → square both
If it’s in denominator → clear it
✨ Quick Formula Flash Recap
Topic | Formula / Rule | Quick Memory Cue |
---|---|---|
Exponents | am×an=am+na^m × a^n = a^{m+n}am×an=am+n | Add for multiply |
Exponents | am÷an=am−na^m ÷ a^n = a^{m−n}am÷an=am−n | Subtract for divide |
Radical | a1/n=ana^{1/n} = \sqrt[n]{a}a1/n=na | Fraction = root |
Distance | (x2−x1)2+(y2−y1)2\sqrt{(x₂−x₁)^2 + (y₂−y₁)^2}(x2−x1)2+(y2−y1)2 | Pythagoras |
Midpoint | (x1+x22,y1+y22)(\frac{x₁+x₂}{2}, \frac{y₁+y₂}{2})(2x1+x2,2y1+y2) | Middle of x’s & y’s |
Slope | y2−y1x2−x1\frac{y₂−y₁}{x₂−x₁}x2−x1y2−y1 | Rise over run |
Quadratic | −b±b2−4ac2a\frac{−b±\sqrt{b^2−4ac}}{2a}2a−b±b2−4ac | Sing the song 🎵 |
Diff. of Squares | a2−b2=(a+b)(a−b)a²−b²=(a+b)(a−b)a2−b2=(a+b)(a−b) | Same terms, opposite signs |