Copyright © 2021, 2019, 2015 Pearson Education, Inc. All Rights Reserved
1.1 Genetics Has a Rich and Interesting History
1.2 Genetics Progressed from Mendel to DNA in Less Than a Century
1.3 Discovery of the Double Helix Launches the Era of Molecular Genetics
1.4 Development of Recombinant DNA Technology Began the Era of Cloning
1.5 The Impact of Biotechnology Is Continually Expanding
1.6 Genomics, Proteomics, and Bioinformatics Are New and Expanding Fields
1.7 Genetic Studies Rely on the Use of Model Organisms
1.8 We Live in the Age of Genetics
William Harvey: Proposed the Theory of Epigenesis
Body organs are not present at the embryo stage but develop later.
Theory of Preformation:
The fertilized egg contains a complete miniature organism called a homunculus.
Schleiden and Schwann (1830): Proposed Cell Theory
All organisms consist of basic structural units called cells.
Louis Pasteur: Disproved Spontaneous Generation
Asserted that living organisms do not arise from nonliving components.
1859: Darwin published The Origin of Species.
Introduced descent with modification and natural selection as mechanisms for evolutionary change.
Alfred Russel Wallace: Independently developed similar theories.
Gregor Mendel: Conducted experiments with pea plants to formulate the basic rules of inheritance.
Traits are passed through generations and establish the foundation of genetics.
Genetics is defined as the study of heredity and variation.
Mitosis:
Chromosomes are copied, resulting in two daughter cells, each with a diploid set (2n).
Meiosis:
Chromosomes copy and split, producing gametes with half the chromosome number (haploid n).
Chromosomal Theory of Inheritance:
Genetic traits are controlled by genes on chromosomes transmitted through gametes, ensuring genetic continuity across generations.
Alleles:
Variants of genes that result from mutations, providing genetic variation.
Genotype: Set of alleles for a trait.
Phenotype: Observable expression determined by genotype.
DNA is the genetic material that carries genetic information, elucidated by studies in the 1940s that identified it as the carrier in bacteria.
DNA is a double-stranded helix, composed of nucleotides, which include:
Sugar (deoxyribose), Phosphate, and nitrogenous bases (adenine, thymine, cytosine, guanine).
Complementary base pairing:
Adenine pairs with Thymine (A–T)
Guanine pairs with Cytosine (G–C).
Describes the flow of genetic information:
DNA is transcribed into RNA, which is then translated into proteins.
Genetic information is written in codons, triplet nucleotides in mRNA that direct the incorporation of specific amino acids into proteins.
Sickle-cell anemia: Caused by a mutation in the hemoglobin gene, resulting in functional alterations in the protein due to a single nucleotide change.
1970s: Discovery of restriction enzymes that cut DNA at specific sites led to the development of recombinant DNA technology and cloning techniques.
Biotechnology is utilized in:
Health care: Genetic testing, therapeutic interventions.
Agriculture: GMOs for enhanced resistance to diseases and improved nutrients.
Legal systems: DNA evidence in courts.
Genomics: Analysis of the structure and function of genomes.
Proteomics: Study of a set of proteins under specific conditions.
Bioinformatics: Use of computational tools to manage biological data.
Similar gene structures across organisms suggest a shared evolutionary heritage.
Characteristics include:
Easy to grow, short life cycle, significant offspring, straightforward genetic analysis.
E. coli: Colon cancer.
Drosophila melanogaster: Nervous system disorders and cancer.
Saccharomyces cerevisiae: Cancer and Werner syndrome.
The timeline from Mendel's work in 1865 to advancements like the Human Genome Project.
1962: Nobel Prize for Watson, Crick, and Wilkins for their DNA double helix model development.
Ongoing discussion about ethical concerns:
Prenatal testing, gene ownership, and the safety of genetic therapies.