Geometry year summary for regents
1. Basic Definitions and Concepts
Points, Lines, Planes: Undefined terms. Line (1D), Plane (2D).
Segments and Rays: Parts of a line.
Angles: Formed by two rays from a vertex.
Types: Acute (<90^\text{o}>), Obtuse (>90^\text{o}>), Right (=90^\text{o}>), Straight (=180^\text{o}>).
Pairs: Complementary (90^\text{o}>), Supplementary (180^\text{o}>), Vertical, Linear Pair.
2. Lines and Angles
Parallel Lines: Never intersect. Transversal creates congruent alternate interior/exterior/corresponding angles; supplementary consecutive interior angles.
Perpendicular Lines: Intersect at right angles.
Slope: m = \frac{\Delta y}{\Delta x}. Parallel lines have equal slopes; Perpendicular lines have negative reciprocal slopes (m1 = -\frac{1}{m2}>).
Distance Formula: d = \sqrt{(x2-x1)^2 + (y2-y1)^2}>
Midpoint Formula: M = \left(\frac{x1+x2}{2}, \frac{y1+y2}{2}\right)>
3. Transformations
Isometries (Rigid Motions): Preserve size and shape.
Translation: Slide. (x,y) \to (x+a, y+b)>
Rotation: Turn. Key rules: 90^\text{o}> CCW (x,y) \to (-y,x)>; 180^\text{o}> (x,y) \to (-x,-y)>
Reflection: Flip. Key rules: x-axis (x,y) \to (x,-y)>; y-axis (x,y) \to (-x,y)>; y=x (x,y) \to (y,x)>
Dilation: Change in size but not shape (non-isometric). (x,y) \to (kx,ky)> (k = scale factor).
4. Triangles
Area: A = \frac{1}{2}bh
Pythagorean Theorem: For right triangles, a^2 + b^2 = c^2>
Congruence: SSS, SAS, ASA, AAS, HL.
Similarity: AA, SAS, SSS.
Triangle Inequality: Sum of any two sides > third side.
Points of Concurrency: Centroid (medians), Orthocenter (altitudes), Incenter (angle bisectors), Circumcenter (perpendicular bisectors).
5. Quadrilaterals
Parallelogram: Opposite sides parallel/congruent; opposite angles congruent; diagonals bisect each other.
Rectangle: Parallelogram + 4 right angles; congruent diagonals.
Rhombus: Parallelogram + 4 congruent sides; perpendicular diagonals bisect angles.
Square: A rhombus and a rectangle.
Trapezoid: One pair parallel sides. Isosceles trapezoid: non-parallel sides/base angles/diagonals congruent.
6. Circles
Circumference: C = 2\pi r or C = \pi d
Area: A = \pi r^2
Chords, Tangents, Secants: Key lines/segments.
Angles: Central Angle = Arc; Inscribed Angle = \frac{1}{2} Arc.
Segment Relations: Intersecting Chords: a \cdot b = c \cdot d>; Tangent-Secant: (tangent)^2 = whole \cdot external>
Equation: (x-h)^2 + (y-k)^2 = r^2>
7. Right Triangle Trigonometry
SOH CAH TOA: Sine, Cosine, Tangent definitions.
Law of Sines: \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}>
Law of Cosines: c^2 = a^2 + b^2 - 2ab\cos C>
Area: A = \frac{1}{2}ab\sin C>
8. Three-Dimensional Geometry
Volume (V) & Surface Area (SA) Formulas:
Prism: V = Bh; SA = 2B + Ph
Cylinder: $$V = \pi r^2