ES

Moles of gas and solution

Key Vocabulary

  • Species – molecule, atom, ion, or compound in an equation

  • Mole – amount of substance, unit is mole (mol)

  • Relative formula mass (Mr) – sum of atomic masses in a chemical formula

  • Relative molecular mass (Mr) – formula mass used for molecules

  • Concentration – amount of solute in a solution, usually in mol/dm³ or M

  • Solute – substance dissolved in a solvent

  • Solvent – liquid in which a substance dissolves

  • Solution – mixture of solute and solvent

  • Decimetre cubed (dm³) – unit of volume, 1 dm³ = 1 litre = 1000 cm³

  • Molar volume of a gas – volume occupied by one mole of gas

Moles of Gases

  • Moles of a gas can be related to its volume, similar to solids and masses.

  • 1 mole of gas occupies 24 dm³ (24,000 cm³) at room temperature and pressure (r.t.p, 25°C/298 K, 1 atm).

  • The gas identity does not affect this; 1 mole of any gas occupies the same volume.

Equation:

  • Moles = Volume (dm³) ÷ 24

  • Or, Moles = Volume (cm³) ÷ 24,000

Examples:

  1. Moles in 300 cm³ of oxygen gas:

  • Moles = 300 ÷ 24,000 = 0.0125 mol

  1. Volume of chlorine gas in 0.4 moles:

  • Volume = 0.4 × 24 dm³ = 9.6 dm³

  1. Volume occupied by 0.10 g of hydrogen at r.t.p:

  • Moles of H₂ = mass ÷ Mr = 0.10 ÷ 2 = 0.05 mol

  • Volume = 0.05 × 24 dm³ = 1.2 dm³

  1. Mass of 12.00 dm³ of oxygen at r.t.p:

  • Moles = 12 ÷ 24 = 0.5 mol

  • Mass = moles × Mr = 0.5 × 32 = 16 g

Reactions Involving Gases

  • Using the balanced equation, the volume of a gas can be calculated from the moles of another species.

Example:

  • 2.00 g CaCO₃ reacts with excess HCl:

    • Equation: CaCO₃ + 2HCl → CaCl₂ + CO₂ + H₂O

Steps:

  1. Calculate moles of CaCO₃:

    • moles = mass ÷ Mr = 2.00 ÷ 100 = 0.02 mol

  2. Use stoichiometric ratio (CaCO₃:CO₂ = 1:1) to find moles of CO₂:

    • 0.02 mol CO₂ expected

  3. Calculate volume of CO₂:

    • volume = moles × molar gas volume = 0.02 × 24 = 0.48 dm³ = 4.80 dm³

Using a table:

Species

CaCO₃

CO₂

Mole ratio

1

1

Mass (g)

2.00

Mr (g/mol)

100

24

Moles

0.02

0.02

Volume (dm³)

0.48

Percentage Yield:

  • Actual volume collected = 4000 cm³ = 4.00 dm³

  • Theoretical = 4.80 dm³

  • % Yield = (actual ÷ theoretical) × 100 = (4.00 ÷ 4.80) × 100 = 83%

Gas Calculations Questions

Volume of O₂ to oxidise 0.4 g Mg

  • Equation: 2Mg + O₂ → 2MgO

  • Mr Mg = 24 g/mol

  • Moles Mg = 0.4 ÷ 24 = 0.0167 mol

  • Mole ratio Mg:O₂ = 2:1 → moles O₂ = 0.0167 ÷ 2 = 0.00835 mol

  • Volume O₂ = 0.00835 × 24,000 cm³ = 200.4 cm³

Mg

O₂

Mole ratio

2

Mass/g

0.4

Mr / g/mol

24

Moles

0.0167

Volume/cm³

Volume of CO₂ from 20 g CuCO₃

  • Equation: CuCO₃ → CuO + CO₂

  • Mr CuCO₃ = 123.5 g/mol

  • Moles CuCO₃ = 20 ÷ 123.5 = 0.162 mol

  • Mole ratio = 1:1 → moles CO₂ = 0.162 mol

  • Volume CO₂ = 0.162 × 24 dm³ = 3.89 dm³

CuCO₃

CO₂

Mole ratio

1

Mass/g

20

Mr / g/mol

123.5

Moles

0.162

Volume/dm³

Volume of Cl₂ to form 27 g FeCl₃

  • Equation: 2Fe + 3Cl₂ → 2FeCl₃

  • Mr FeCl₃ = 162.5 g/mol

  • Moles FeCl₃ = 27 ÷ 162.5 = 0.166 mol

  • Mole ratio Cl₂:FeCl₃ = 3:2 → moles Cl₂ = 0.166 × (3/2) = 0.249 mol

  • Volume Cl₂ = 0.249 × 24,000 cm³ = 5,976 cm³ ≈ 5.98 dm³

Cl₂

FeCl₃

Mole ratio

3

Volume/cm³

Mr / g/mol

71

Moles

0.249

Volume of CO₂ from 25 cm³ C₂H₆

  • Equation: C₂H₆ + 3½O₂ → 2CO₂ + 3H₂O

  • Mr not needed for gas volume

  • Moles C₂H₆ = 25 ÷ 24,000 = 0.0010417 mol

  • Mole ratio C₂H₆:CO₂ = 1:2 → moles CO₂ = 0.0010417 × 2 = 0.002083 mol

  • Volume CO₂ = 0.002083 × 24,000 cm³ = 50 cm³

C₂H₆

CO₂

Mole ratio

1

Volume/cm³

25

Molar gas volume/cm³

24,000

Moles

0.001042

Maximum volume of butane from 13.5 g C₄H₆ and 18 dm³ H₂

  • Equation: C₄H₆ + 2H₂ → C₄H₁₀

  • Mr C₄H₆ = 54 g/mol

  • Moles C₄H₆ = 13.5 ÷ 54 = 0.25 mol

  • Moles H₂ = 18 ÷ 24 = 0.75 mol

  • Mole ratio C₄H₆:H₂ = 1:2 → 0.25 × 2 = 0.5 mol H₂ needed → H₂ in excess, C₄H₆ is limiting

  • Moles C₄H₁₀ = 0.25 mol

  • Volume C₄H₁₀ = 0.25 × 24 dm³ = 6 dm³

C₄H₆

H₂

Mole ratio

1

Mass/g or volume

13.5 g

Mr / g/mol

54

Moles

0.25

C₄H₆

C₄H₁₀

Mole ratio

1

Moles

0.25

Volume/dm³

Gas Volume Calculations Using Avogadro’s Law

  • Equal volumes of gases at the same temperature and pressure contain equal numbers of molecules and moles.

  • Therefore, for gases, mole ratio = volume ratio.

Examples:

  1. Volume of O₂ to oxidise 10 cm³ CH₄

  • Equation: CH₄ + 2O₂ → CO₂ + 2H₂O

  • Mole ratio CH₄:O₂ = 1:2 → Volume ratio = 10 : 20 cm³

  • Answer: 20 cm³ O₂

  1. Volume of CO₂ from 25 cm³ C₂H₆

  • Equation: C₂H₆ + 3½O₂ → 2CO₂ + 3H₂O

  • Mole ratio C₂H₆:CO₂ = 1:2 → Volume ratio = 25 : 50 cm³

  • Answer: 50 cm³ CO₂

  1. Volume of O₂ for 40 cm³ CO

  • Equation: CO + ½O₂ → CO₂

  • Mole ratio CO:O₂ = 1:½ → Volume ratio = 40 : 20 cm³

  • Answer: 20 cm³ O₂

  1. Hydrogenation of 100 cm³ C₄H₆

  • Equation: C₄H₆ + 2H₂ → C₄H₁₀

  • Mole ratio C₄H₆:H₂ = 1:2 → Volume H₂ = 100 × 2 = 200 cm³

  • Volume of C₄H₁₀ produced = 100 cm³ (mole ratio 1:1)

  1. Chlorination of 20 cm³ C₂H₆

  • Equation: C₂H₆ + 6Cl₂ → 6HCl + C₂Cl₆

  • Mole ratio C₂H₆:Cl₂ = 1:6 → Volume Cl₂ = 20 × 6 = 120 cm³

  • Volume HCl produced = 20 × 6 = 120 cm³

Predicting the Volume of CO₂ Produced

  • Equation: CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂

Method:

  • 50 cm³ of 2 M HCl is measured into a conical flask (excess).

  • 0.4 g CaCO₃ is weighed into a phial and placed in the flask.

  • A bung with delivery tube is fitted to a gas syringe.

  • Flask is tilted to mix reactants; volume of CO₂ collected is recorded.

  • Experiment is repeated and average volume of CO₂ calculated.

Calculations:

  • Mr CaCO₃ = 100 g/mol

  • Moles CaCO₃ = 0.4 ÷ 100 = 0.004 mol

  • Mole ratio CaCO₃:CO₂ = 1:1 → moles CO₂ = 0.004 mol

  • Volume of CO₂ at r.t.p = 0.004 × 24 dm³ = 0.096 dm³ = 96 cm³

Percentage yield:

  • If actual CO₂ collected = 85 cm³,

  • % Yield = (85 ÷ 96) × 100 ≈ 88.5%

Reason % yield < 100%:

  • Gas may escape before collection.

  • Some CaCO₃ may not fully react.

  • Measurement inaccuracies in gas syringe.

Calculation of the Volume of H₂ Produced

  • Equation: Mg + 2HCl → MgCl₂ + H₂

Method:

  • 50 cm³ of 2 M HCl is added to a conical flask (excess).

  • 0.04 g magnesium is placed in a phial in the flask.

  • A bung with delivery tube is fitted; delivery tube end is in water trough.

  • 100 cm³ measuring cylinder is filled with water and inverted over the tube.

  • Flask is tilted to mix reactants; volume of H₂ collected by downward water displacement is recorded.

Calculations:

  • Mr Mg = 24 g/mol

  • Moles Mg = 0.04 ÷ 24 ≈ 0.00167 mol

  • Mole ratio Mg:H₂ = 1:1 → moles H₂ = 0.00167 mol

  • Volume of H₂ at r.t.p = 0.00167 × 24 dm³ ≈ 0.0401 dm³ = 40.1 cm³

Percentage yield:

  • If actual H₂ collected = 36 cm³,

  • % Yield = (36 ÷ 40.1) × 100 ≈ 89.8%

Reason % yield < 100%:

  • Gas may escape during mixing.

  • Magnesium may not fully react.

  • Measurement errors in collecting gas.

Concentrations of Solutions

  • Moles of solute can be related to solution volume and concentration.

  • Concentration is measured in mol/dm³ or M (1 dm³ = 1000 cm³).

  • A 1 M solution contains 1 mole of solute in 1 dm³ of solution.

Equations:

  • Moles: n = c × V (V in dm³)

  • Concentration: c = n ÷ V

Examples:

  1. Moles in 25 cm³ of 0.5 M NaOH:

  • Convert volume: 25 ÷ 1000 = 0.025 dm³

  • Moles = 0.025 × 0.5 = 0.0125 mol

  1. Concentration of 50 cm³ containing 0.01 mol NH₃:

  • Volume in dm³: 50 ÷ 1000 = 0.05 dm³

  • Concentration: c = 0.01 ÷ 0.05 = 0.2 M

  1. Concentration of 80 g NaOH in 800 cm³:

  • Mr NaOH = 40 + 16 + 1 = 57 g/mol

  • Moles NaOH = 80 ÷ 40 ≈ 2 mol (correct: 80 ÷ 40? Wait step by step)

    • Na = 23, O = 16, H = 1 → Mr = 23 + 16 + 1 = 40 g/mol

  • Moles = 80 ÷ 40 = 2 mol

  • Volume = 800 ÷ 1000 = 0.8 dm³

  • Concentration = 2 ÷ 0.8 = 2.5 M

Moles of Solute in Solution

1. Moles of solute:

  • Formula: n = c × V (V in dm³)

a. 50 cm³ of 2.00 M solution:

  • V = 50 ÷ 1000 = 0.050 dm³

  • n = 2 × 0.050 = 0.100 mol

b. 20 cm³ of 0.50 M solution:

  • V = 20 ÷ 1000 = 0.020 dm³

  • n = 0.50 × 0.020 = 0.010 mol

c. 20.0 cm³ of 0.10 M solution:

  • V = 20 ÷ 1000 = 0.020 dm³

  • n = 0.10 × 0.020 = 0.002 mol

2. Concentration of solution:

  • Formula: c = n ÷ V (V in dm³)

a. 0.05 mol in 200 cm³:

  • V = 200 ÷ 1000 = 0.200 dm³

  • c = 0.05 ÷ 0.200 = 0.25 M

b. 0.003 mol in 25 cm³:

  • V = 25 ÷ 1000 = 0.025 dm³

  • c = 0.003 ÷ 0.025 = 0.12 M

c. 0.125 mol in 500 cm³:

  • V = 500 ÷ 1000 = 0.500 dm³

  • c = 0.125 ÷ 0.500 = 0.25 M

3. Volume of solution:

  • Formula: V = n ÷ c (V in dm³, then convert to cm³)

a. 2.00 M solution containing 0.5 mol:

  • V = 0.5 ÷ 2 = 0.25 dm³ = 250 cm³

b. 0.500 M solution containing 0.0300 mol:

  • V = 0.0300 ÷ 0.500 = 0.06 dm³ = 60 cm³

4. Mass of solute:

  • Formula: mass = n × Mr

a. 500 cm³ of 1 M NaOH:

  • V = 500 ÷ 1000 = 0.5 dm³

  • n = 1 × 0.5 = 0.5 mol

  • mass = 0.5 × 40 = 20 g

b. 25.0 cm³ of 0.5 M NaOH:

  • V = 25 ÷ 1000 = 0.025 dm³

  • n = 0.5 × 0.025 = 0.0125 mol

  • mass = 0.0125 × 40 = 0.50 g

5. Concentration of solution by mass:

a. 26.5 g Na2CO3 in 250 cm³:

  • Mr Na2CO3 = 23×2 + 12 + 16×3 = 106 g/mol

  • moles = 26.5 ÷ 106 ≈ 0.25 mol

  • V = 250 ÷ 1000 = 0.25 dm³

  • c = 0.25 ÷ 0.25 = 1.0 M

b. 62.5 g CuSO4·5H2O in 1 L:

  • Mr CuSO4·5H2O = 63.5 + 32 + 16×4 + 5×18 = 63.5 + 32 + 64 + 90 = 249.5 g/mol

  • moles = 62.5 ÷ 249.5 ≈ 0.25 mol

  • V = 1 dm³

  • c = 0.25 ÷ 1 = 0.25 M

6. Mass of AgNO3 for 50.0 cm³ of 0.2 M solution:

  • V = 50 ÷ 1000 = 0.050 dm³

  • n = 0.2 × 0.050 = 0.010 mol

  • Mr AgNO3 = 108 + 14 + 16×3 = 108 + 14 + 48 = 170 g/mol

  • mass = 0.010 × 170 = 1.70 g

Titration Calculations

  • Titration involves reacting an acid with an alkali and measuring the exact volumes needed for neutralisation.

  • If the concentration of one solution is known, the other can be calculated.

Example:

25 cm³ of 0.200 M NaOH required 40 cm³ of HCl to neutralise. Find the concentration of HCl.

Steps:

  1. Balanced equation (underline reactants used):
    NaOH(aq) + HCl(aq) → NaCl(aq) + H2O(l)

  2. Mole ratio:
    1 : 1

  3. Volumes (dm³) and concentrations:

  • NaOH: 25/1000 = 0.025 dm³, 0.200 M

  • HCl: 40/1000 = 0.040 dm³, unknown

  1. Moles of known substance (NaOH):

  • n = V × c = 0.025 × 0.2 = 0.005 mol

  1. Moles of HCl (from mole ratio 1:1):

  • n = 0.005 mol

  1. Concentration of HCl:

  • c = n / V = 0.005 / 0.040 = 0.125 M

1. Calculate the concentration of potassium hydroxide solution used when 25cm³ was completely neutralised by 26.50cm³ of 0.10 moldm⁻³ hydrochloric acid?
KOH(aq) + HCl(aq) → KCl(aq) + H₂O(l)

Substance

Mole ratio

Volume / dm³

Concentration / M

Moles (mol)

KOH

1

25/1000 = 0.025

?

0.00265

HCl

1

26.50/1000 = 0.0265

0.10

0.00265

Concentration of KOH: c = n / V = 0.00265 / 0.025 = 0.106 M

2. Calculate the concentration of sulfuric acid if 17.40cm³ was required to completely neutralise 25cm³ of a 0.50 moldm⁻³ potassium hydroxide solution.
2KOH(aq) + H₂SO₄(aq) → K₂SO₄(aq) + 2H₂O(l)

Substance

Mole ratio

Volume / dm³

Concentration / M

Moles (mol)

KOH

2

25/1000 = 0.025

0.50

0.0125

H₂SO₄

1

17.40/1000 = 0.0174

?

0.00625

Concentration of H₂SO₄: c = n / V = 0.00625 / 0.0174 ≈ 0.359 M

3. In a titration, 10cm³ of a 1.0 moldm⁻³ solution of sulphuric acid was neutralised by 36.75cm³ of a sodium hydroxide solution. Calculate the concentration of the sodium hydroxide solution.
2NaOH(aq) + H₂SO₄(aq) → Na₂SO₄(aq) + 2H₂O(l)

Substance

Mole ratio

Volume / dm³

Concentration / M

Moles (mol)

NaOH

2

36.75/1000 = 0.03675

?

0.020

H₂SO₄

1

10/1000 = 0.010

1.0

0.010

Concentration of NaOH: c = n / V = 0.020 / 0.03675 ≈ 0.544 M

4. Calculate the concentration of hydrochloric acid when 16.85cm³ was required to completely neutralise 25cm³ of a 1.00 moldm⁻³ solution of sodium hydroxide.
NaOH(aq) + HCl(aq) → NaCl(aq) + H₂O(l)

Substance

Mole ratio

Volume / dm³

Concentration / M

Moles (mol)

NaOH

1

25/1000 = 0.025

1.00

0.025

HCl

1

16.85/1000 = 0.01685

?

0.025

Concentration of HCl: c = n / V = 0.025 / 0.01685 ≈ 1.48 M