Physio Psych

2/12/25 

-structure of vertebrate nervous system 

  • Central nervous system (CNS) 

  • Brain and spinal cord 

  • Peripheral nervous system  

  • Connects brain and spinal cord to rest of body 

-anatomical terms referring to directions  

  • Dorsal 

  • Ventral 

  • Anterior 

  • Posterior 

  • Superior 

  • Inferior  

-The Spinal Cord 

  • Part of the CNS found within spinal column 

  • Communicates with sense organs and muscles 

  • Except those of head 

  • Entering dorsal roots 

  • Carry sensory information 

  • Exiting ventral roots 

  • Carry motor information 

  • Consists of two types of matter 

  • Grey matter  

  • Center of spinal cord 

  • Densley packed with cell bodies and dendrites 

  • White matter 

  • Myelinated axons 

  • Carry information from gray matter to brain or other areas of spinal cord 

  • Each segment sends sensory information to brain and receives motor commands 

 

-the autonomic nervous system 

  • Sends and receives messages to regulate automatic behaviors  

  • Heart rate 

  • Blood pressure 

  • Respiration 

  • Digestion 

  • Divided into two subsystems 

  • Sympathetic nervous system 

  • Parasympathetic nervous system 

-the sympathetic nervous system 

  • Prepares organs for rigorous activity 

  • Increases heart rate, blood pressure, respiration, etc. 

  • “Fight or flight response” 

  • Primary neurotransmitter 

  • Norepinephrine 

-the parasympathetic nervous system 

  • Facilitates vegetative and nonemergency responses  

  • Decreases functions increased by sympathetic nervous system 

  • Dominant during relaxed states 

  • “Rest and digest” 

  • Primary neurotransmitter 

  • Acetylcholine 

-major divisions of the vertebrate brain 

  • Forebrain 

  • Midbrain 

  • Hindbrain 

-the hindbrain 

  • Consists of the  

  • Pons- Latin for bridge 

  • Cerebellum: largest region of the hindbrain 

  • Movements and balance 

  • Spatial reasoning 

  • Sound discrimination 

  • Sensory integration 

  • Medulla: located just above spinal cord 

  • Vital reflexes  

  • Breathing, heart rate, vomiting, salivation, coughing, sneezing 

  • Cranial nerves 

  • Allow the medulla to control sensations from head, muscle movements in head, and many parasympathetic outputs 

-the midbrain 

  • Contains the following structures  

  • Tectum: roof of the midbrain 

  • Superior colliculus and inferior colliculus: processes sensory information 

  • Substantia nigra: gives rise to the dopamine-containing pathway facilitating readiness for movement 

-the forebrain 

  • Most prominent part of mammalian brain 

  • Two cerebral hemispheres 

  • Consists of outer cortex and subcortical regions 

  • Outer portion = “cerebral cortex” 

  • Each side receives sensory information and controls motor movement from contralateral side of body 

  • Basal ganglia: compromises the caudate nucleus, the putamen, and the globus pallidus 

  • Associated with planning of motor movement, and with aspects of memory and emotional expression 

  • Also important for attention, language planning, and other cognitive function 

2/17/25 

-the ventricles 

  • Four fluid-filled cavities within brain’s central canal containing cerebrospinal fluid 

  • CSF: clear fluid found in brain and spinal cord  

  • Provides “cushioning” for brain 

  • Reservoir of hormones and nutrition for brain and spinal cord 

-the meninges 

  • Membranes that surround brain and spinal cord 

  • Dura matter 

  • Archanoid layer  

  • Subarachnoid space 

  • Pia mater 

  • Contain pain receptors 

  • Meningitis: inflammation of meninges (is painful) 

  • Swollen blood vessels in meninges are responsible for  

  • Migraines 

-the cerebral cortex 

  • Most prominent part of mammalian brain 

  • Consists of cellular layers on outer surface of cerebral hemispheres 

  • Divided into two halves 

  • Joined by two bundle of axons 

  • Corpus callosum 

  • Anterior commissure 

  • More highlight developed in humans than other species 

-the four lobes of the cerebral cortex 

  • Occipital lobe 

  • Located at posterior end of cortex 

  • Contains primary visual cortex 

  • First area of cortex to process visual information 

  • Highly responsible for visual input 

  • Damage can result in cortical blindness 

  • Parietal lobe 

  • Contains primary somatosensory cortex 

  • Primary target for 

  • Touch sensations 

  • Information from muscle-stretch receptors and join receptors 

  • Processes and integrates information about eye, head, and body positions from information sent from muscles and joints 

  • Temporal lobe 

  • Located on lateral portion of each hemisphere near temples 

  • Primary auditory cortex 

  • Essential for processing spoken language 

  • Responsible for complex aspects of vision, including movement and some emotional and motivational behaviors 

  • Klüver-Bucy syndrome: associated with temporal lobe damage 

  • Frontal lobe 

  • Contains prefrontal cortex and precentral gyrus 

  • Precentral gyrus 

  • Primary motor cortex 

  • Responsible for control of fine motor movement 

  • Prefrontal cortex 

  • Most anterior portion of frontal lobe 

  • Integration center for all sensory information and other areas of cortex 

-prefrontal cortex 

  • Posterior area 

  • Movement 

  • Middle area 

  • Cognitive control 

  • Emotional reactions 

  • Working memory 

  • Holding info in mind and manipulating it 

  • Anterior area 

  • Decision making 

  • Reward value 

-prefrontal lobotomy 

  • Surgical damage to prefrontal cortex 

  • In 1940s and 50s, about 40,000 performed 

  • Mostly schizophrenics 

  • Later depression, anxiety 

  • Side effects 

  • Apathy 

  • Lack of ability to plan 

  • Memory disorders 

  • Lack of emotional expression 

  • Impulsivity 

  • Incontinence 

-research methods 

  • Main categories of research methods to study brain 

  • Examining effects of brain damage 

  • Examining effects of stimulating a brain area 

  • Record brain activity during behavior 

  • Correlate brain anatomy with behavior 

-effects of brain damage 

  • Experimental brain damage 

  • Damage to brain created through 

  • Removal of brain tissue 

  • Electrical current 

  • Neurotoxic chemicals 

  • Measure behavioral effects of damage 

  • Transgenic animals 

  • Affects cell, transmitter or receptor 

2/19/24 

-transcranial magnetic stimulation 

  • Uses intense magnetic field on portion of scalp to temporarily deactivate neurons 

  • Creates reversible lesion 

  • Allows researchers to study behavior with a brain area active, them inactive, then active again 

  • Advantages 

  • We can do this in people 

-recording brain activity 

  • EEG: electroencephalograph 

  • Records electrical activity produced by various brain regions 

  • Event-related potentials: change in electrical potential because of sort of event 

  • Poor spatial resolution: image isn’t particularly exact 

  • Good temporal resolution: can pick up changes in brain activity that happen in milliseconds after the event occurs 

  • Can only measure activity on outer cortical layer 

  • PET: positron-emission tomography 

  • Positron-emitting isotopes attached to reagents (oxygen or glucose) 

  • Labeled regents injected into blood stream 

  • More active areas of brain require more oxygen and glucose 

  • Radio-reagents build in more active areas 

  • Good spatial resolution: good at showing which spaces are and aren’t active 

  • Poor temporal resolution: slightly slower at catching reactions 

 

  • FMRI: functional magnetic resonance imaging 

  • More active areas in brain 

  • Use more oxygen 

  • BOLD signal 

  • Blood oxygen level dependent signal 

  • Oxygen consumption in brain provides picture of activation 

  • Safer and less expensive than PET 

  • Good spatial resolution 

  • Poor temporal resolution 

Chapter 5 

-general principles of perception 

  • Specialized receptors for each sensory system 

  • Sensitive to particular type of energy 

  • Law of specific nerve energies 

  • Activity by particular nerve conveys particular type of information to the brain 

-the eye 

  • Light enters through pupil 

  • Focused by lens and cornea onto rear surface of eye 

  • Retina 

  • Lined with visual receptors 

  • Importantly: 

  • Image reverted and flipped on retina 

  • Left to right and top to bottom 

-route within the retina: bipolar cells 

  • Rods and cones 

  • Primary visual receptors 

  • Bipolar cells 

  • Ganglion cells 

  • Axons of ganglion cells come together to form optic nerve 

  • Horizontal and amacrine cells 

  • Alter signaling between cell levels 

-the optic nerve 

  • Axons of ganglion cells 

  • Exit through back of eye and travel to brain 

  • First stop: LGN of thalamus 

  • What do we refer to the area of exit as? 

  • Blind spot 

-the fovea 

  • Central portion of retina 

  • Allow for acute and detailed vision 

  • Packed tight with receptors 

  • Cones 

  • Each cone in fovea 

  • Attaches to single bipolar cell and single ganglion cell 

  • Provides direct line to brain 

  • Allows for precise visual acuity 

-the periphery of the retina 

  • Periphery to retina 

  • Greater number of receptors converge into ganglion and bipolar cells 

  • Peripheral vision 

  • Lower acuity 

  • Greater light sensitivity 

-visual receptors: rods and cones 

  • Rods 

  • Most abundant in periphery 

  • Respond to faint light  

  • Cones 

  • Most abundant in and around fovea  

  • Essential for color vision 

  • More useful in bright light 

  • Provide about 90% of visual input       

  • Ratio of rods to cones higher in nocturnal species 

2/24/25 

-color vison 

  • Visible light portion of electromagnetic spectrum 

  • Color perception dependent upon wavelength of light 

  • Light itself DOES NOT have color 

  • “visible” wavelengths dependent upon species’ receptors 

-specificity of color vision 

  • Depends on specific receptors within eye 

  • Two major interpretations of color vision 

  • Trichromatic theory 

  • Opponent process theory 

-trichromatic theory 

  • Color perception occurs through the relative rates of response by three kinds of cones  

  • Short wavelength 

  • Medium wavelength 

  • Long wavelength  

  • Each cone responds to a specific range of wavelengths 

  • Ratio of activity across three cones determines color 

  • More intense light? 

  • Increases brightness but does not change ratio 

-color vision deficiency 

  • Impairment in perceiving color differences 

  • Gene responsible contained on X chromosome 

  • Caused by either lack of a type of cone or a cone with abnormal properties 

  • Most common form 

  • Red and green deficiency 

  • Long and medium wavelength cones have some photopigment 

-the opponent-process theory 

  • Color perception in paired opposites 

  • Brain mechanisms that perceive color on a continuum 

  • Red to green  

  • Yellow to blue 

  • Possible mechanism for theory 

  • Bipolar cells are excited by one set of wavelengths and inhibited by another 

-an overview of the mammalian visual system 

  • Rids and cones make synaptic contact with horizontal cells and bipolar cells 

  • Horizontal cells 

  • Cella that make inhibitory contact with bipolar cells 

  • Bipolar cells synapse onto amacrine cells and ganglion cells 

  • Amacrine cells 

  • Make inhibitory contact with ganglion cells 

  • Ganglion cell axons form optic nerve 

-lateral inhibition in the retina 

  • Reduction of activity in one neuron by activity in neighboring neurons 

  • Emphasizes borders of objects 

  • Response of visual receptor cells 

  • Net result of excitatory and inhibitory messages received 

-processing in the retina 

  • Part of thalamus 

  • Specialized for visual perception 

  • Destination for most ganglion cell axons 

  • Sends axons to: 

  • Occipital cortex 

-further processing 

  • Receptive field 

  • Part of visual field that either excites or inhibits a cell 

  • For a visual receptor (rod or cone) 

  • Point in space from which light strikes it 

  • For other visual cells 

  • Derived from visual fields of cells that feed it information 

-the primary visual cortex 

  • Aka Area V1 

  • Receives information from lateral geniculate nucleus (LGN) 

  • Responsible for first stages of visual processing 

  • Activity corresponds to conscious visual experience 

  • Activity increases in V1 when creating mental image 

  • Aphantasia 

  • Lack of visual imagery 

-parallel processing in the visual cortex 

  • 80 brain areas that contribute to vision in different ways 

  • Different areas for 

  • Shape 

  • Color 

  • Location detection 

  • Movement detection 

-the ventral and dorsal streams 

  • The ventral stream 

  • Visual path through temporal cortex 

  • The “what” path 

  • Specialized for identifying and recognizing objects 

  • The dorsal stream 

  • Visual path through parietal cortex 

  • The “how” path (previously referred to as “where” pathway 

  • Important for visually guided movements 

2/26/25 

-recognizing faces 

  • Face recognition occurs relatively soon after birth 

  • People with cataracts removed at 2-6 months develop nearly normal vision 

  • Slight difficulties in distinguishing faces 

  • Newborns show strong preference for right-side-up face 

  • Supoorts idea of built-in face recognition system 

  • Facial recognition continues to develop gradually into adolescence 

-prosopagnosia 

  • The impaired ability to recognize faces 

  • Occurs after damage to fusiform gyrus (FFA) of inferior temporal cortex 

  • The FFA responds strongly to faces 

Chapter 6 

-sound and the ear 

  • How do we experience sounds 

  • Sound wave detection 

  • What are sound waves 

  • Period compression of air, water, or other media 

  • Vary in amplitude and frequency 

 

-properties of sound 

  • Amplitude 

  • Intensity of sound wave 

  • Larger waves= louder sounds 

  • Frequency 

  • Number of compressions per second 

  • Measured in hertz (Hz) 

  • Related to pitch  

  • Children hear higher frequency than adults 

  • Ability to recognize high frequencies diminishes with 

  • Age 

  • Exposure to loud noises 

-structures of the ear 

  • Outer ear 

  • Pinna 

  • Responsible for 

  • Altering reflection of sound waves into middle ear 

  • Localizing sources of sound 

  • Middle ear 

  • Tympanic membrane 

  • Vibrates when struck by sound waves 

  • Also known as ear drums 

  • Connects to three tiny bones (ossicles) 

  • Hammer, anvil, stirrup 

  • Transform waves into stronger waves to oval window 

  • Inner ear 

  • Oval window 

  • Transmits waves through viscous fluid of inner ear 

  • Cochlea 

  • Snail-shapes structure 

  • Contains three fluid-filled tunnels 

  • Scala vestibuli, scala media, and the scala tympani 

  • Hair cells 

  • Auditory receptors 

  • Lie between basilar membrane and tectorial membrane 

  • Excite cells of auditory nerve when displaced by vibrations in fluid of cochlea 

-variations in sensitivity to pitch 

  • Absolute pitch (“pitch perfect”) 

  • Ability to hear a note and identify it  

  • Genetic predisposition may contribute to it 

  • Main determinant 

  • Early and extensive musical training 

-the auditory cortex 

  • Primary auditory cortex (area A1) 

  • Destination for most auditory info 

  • Located in superior temporal cortex 

  • Contralateral organization 

  • Each hemisphere receives most information from opposite ear 

-organization of the auditory cortex 

  • Parallels visual cortex 

  • Anterior temporal cortex 

  • What pathway for sound 

  • Sensitive to sound patterns 

  • Posterior temporal cortex 

  • Where pathway 

  • Important for sound localization 

  • Damage to superior temporal cortex 

  • Motion deadness 

  • Requires experience to develop properly 

-hearing loss 

  • Two categories of hearing impairment 

  • Conductive or middle ear deafness 

  • Nerve deafness or inner ear deafness 

-conductive/middle ear deafness 

  • Bones of middle ear fail to traansmit sound waves properly to the cochlea 

  • Causes 

  • Disease 

  • Infections 

  • Tumorous bone growth 

  • Normal cochlea and auditory nerve 

  • Allow people to hear own voice clearly 

  • Can be corrected by surgery or hearing aids that amplify stimulus 

-nerve or inner-ear deafness 

  • Results from damage to cochlea, hair cells, or auditory nerve 

  • Can be confined to one part of cochlea 

  • People can hear only certain frequencies 

  • Can be inherited or cause by prenatal problems or early childhood disorders 

-hearing, attention, and old age 

  • Brain areas responsible for language comprehension become less active 

  • Decrease in inhibitory neurotransmitters in auditory areas 

  • Trouble suppressing irrelevant sounds and attending to important ones 

  • Hearing improves if listener watches speaker’s face 

-sound localization 

  • How do we localize sounds? What are the three cues we use to accomplish sound localization 

  • Depends upon comparing the responses of the two ears 

  • Three cues 

  • Sound shadow 

  • Volume related 

  • Time of arrival 

  • Phase difference

3/3/25 

-the mechanical senses 

  • Respond to pressure, bending, or other distortions of receptor 

  • Touch 

  • Pain 

  • Vestibular sensation 

-somatosensory receptors 

  • Touch receptors come in many forms 

  • Stimulation opens sodium channels 

  • Trigger action potential 

  • Two types located close to surface of skin 

  • Merkel Disks (receptors) 

  • Fire continuously while stimulus is present 

  • Sensing fine details 

  • Meissner corpuscle 

  • Fire only when a stimulus is first applied and when it is removed 

  • Controlling-handgrip 

-Merkel Disks 

  • Receptors respond to light touch 

  • Important for sensing fine detail and shape 

  • Sex difference in touch sensitivity? 

  • Men and women have same number of Merkel disks 

  • Women tend to have smaller fingers 

  • Results in Merkel disks compacted into a smaller area 

  • Two types located deeper in the skin 

  • Ruffini cylinder 

  • Fire continuously to stimulation 

  • Perceive stretching of skin 

  • Pacinian corpuscle 

  • Fire only when stimulus is first applied and when it is removed 

  • Associated with sensing rapid vibrations and fine texture 

-pain 

  • Experience evoked by harmful stimulus 

  • Purpose? 

  • Directs one’s attention toward a danger 

  • Pain sensation begins with least specialized of all receptors  

  • Bare nerve endings 

  • unmyelinated 

  • Nociceptors 

  • Axons carrying pain info have little or no myelin 

  • Speed of transmission determined by? 

  • Thickness of axons 

  • Sharp pain transmitted via thicker axons 

  • Dull pain transmitter via thinner axons 

  • Mild pain 

  • Triggers release of glutamate in spinal cord 

  • Stronger pain  

  • Triggers release of glutamate 

  • Releases several neuropeptides 

  • Substance P 

  • CGRP (calcitonin gene-related peptide) 

-spinal pathways for touch and pain 

  • Pain information 

  • Crosses to contralateral side at once 

  • Toch information 

  • Does not cross until medulla 

-emotional pain  

  • Emotional associations of pain 

  • Painful stimuli 

  • Activate a path through reticular formation of medulla 

  • Other areas involved 

  • Several central nuclei of thalamus  

  • Amygdala  

  • Hippocampus  

  • Prefrontal cortex 

  • Cingulate cortex 

  • Areas impacted during hypnotic suggestions against pain 

  • Hurt feelings activate same pathway 

  • Having a broken heart is painful 

-relieving pain 

  • Opioid mechanisms 

  • Systems sensitive to opioid drugs and similar chemicals 

  • Opiates bind to receptors in spinal cord and periaqueductal gray area of midbrain 

  • Endorphins 

  • Endogenous morphine 

  • Group of chemicals that bind to same receptors as morphine 

 3/3/25

-more ways of relieving pain  

  • Placebo 

  • Cannabinoids  

  • Chemicals found in marijuana 

  • Act mainly in periphery of body 

  • Intoxication not necessary for pain relief 

robot