BIOCHEMISTRY OF THE LIVER – 2025
• Lecturer: Endre Kristóf (based on materials of Prof. Dr. László Fésüs)
• Contact: kristof.endre@med.unideb.hu
Faculty of Medicine, Dept. of Biochemistry & Molecular Biology
Topic block: BASIC ARCHITECTURE OF THE LIVER
• Classic (hepatic) lobule: hexagon; central vein center, portal triads (hepatic artery, portal vein, bile duct) at vertices. Blood: portal vein/hepatic artery → sinusoids → central vein → IVC.
• Portal lobule: triangle; portal triad in center, central veins at corners; organized along bile flow.
• Hepatic acinus (see next page): perfusion-based diamond.
• Liver ≈ 2.5\% body weight; ≈ 300\,\text{ml} blood.
• Acinus diamond: short-axis corners = portal triads, long-axis corners = central veins.
• Sinusoidal endothelium: fenestrated, no tight junctions or basement membrane.
• Bile canaliculi: formed between adjacent hepatocytes (canalicular membranes).
• Hepatocytes: polygonal, 20\text{–}30\,\mu\text{m}; abundant cytoplasm, mitochondria. Membrane domains: sinusoidal (microvilli), canalicular, apicolateral.
• Kupffer cells (macrophages) in sinusoidal lumen.
• Stellate (Ito) cells in Space of Disse: vitamin A storage, fibrogenesis.
• Progenitor (oval) cells present.
• Liver contains ≈ 2.5\times 10^{11} hepatocytes; can regrow after \le 90\% resection.
THE LIVER IN THE SERVICE OF OTHER ORGANS
• First-pass effect on portal blood.
• Insulin-independent uptake via GLUT2, phosphorylation by glucokinase.
• Glycogen synthesis/storage & glucose release via GLUT2.
• Gluconeogenesis substrates: Cori-lactate cycle, alanine cycle, glycerol, amino acids.
• Fructose metabolism: fructokinase → \text{fructose-1-P} → aldolase B ⇒ dihydroxyacetone-P + glyceraldehyde.
• Galactose metabolism: galactokinase → \text{gal-1-P} → UDP-Gal ↔ glucose-1-P → glucose-6-P.
• Fatty-acid & triacylglycerol (TAG) synthesis in fed state.
• Ketone-body formation during starvation (large mitochondrial mass).
• Pentose phosphate pathway → NADPH for FA synthesis, mevalonate, detox, antioxidants.
• Carnitine final hydroxylation; Creatine: guanidino-acetate + SAM → creatine.
• High glucose → pancreatic β-cells secrete insulin → liver, muscle, adipose: glycogen & lipid synthesis, glucose uptake.
• Low glucose → α-cells secrete glucagon → liver: glycogenolysis + gluconeogenesis.
Branches:
• Chylomicron remnants deliver dietary TAG/Chol to liver.
• Liver synthesizes VLDL, de novo FA & cholesterol; secretes bile acids.
• HDL trafficking of cholesterol.
Pathway: intestinal glucose → portal vein → liver (first pass) → glycogen & acetyl-CoA → FA & TAG → VLDL → adipose.
Amino acids partially oxidized (TCA), nitrogen → urea.
• Mobilized adipose FA → liver β-oxidation → acetyl-CoA accumulates (OAA depleted) → ketogenesis (\text{acetoacetate},\, \beta\text{-OH-butyrate}).
• Glycerol, amino acids → gluconeogenesis → glucose export (brain).
Glucagon stimulates glycogenolysis (early), then gluconeogenesis (pyruvate, lactate, AA, glycerol).
Ketone bodies produced for peripheral use.
• After glycogen depletion, gluconeogenesis dominant.
• Glucogenic AA from muscle proteolysis.
• Adipose FA → liver oxidation → ketone bodies for brain.
• Excess ketones lost in urine.
• Liver orchestrates: dietary uptake (unlimited CM-remnants), de novo synthesis, VLDL secretion, LDL-R mediated reuptake, HDL reverse transport, bile acid & cholesterol excretion.
Decreases: VLDL/bile acid synthesis, biliary cholesterol efflux (\approx 800\,\text{mg day}^{-1}).
Increases: unlimited CM-remnant uptake, LDL-R recycling, HDL-R (SR-B1) uptake, de novo production.
• Urea cycle + glutamine synthesis remove ammonia, regulate \text{pH}.
• Plasma protein turnover (half-life \approx 10\,\text{days}) supplies amino acids.
• Vitamin A storage, D 25-hydroxylation, vitamin K storage/“regeneration”.
• Iron stored in ferritin (\approx 10\% body ferritin in liver).
• Copper stored/secreted as ceruloplasmin.
• Major plasma proteins synthesized: albumin, transferrin, ceruloplasmin, apo-lipoproteins, clotting factors (vit-K-dependent \gamma-carboxylation), APPs, etc.
Hepatic roles summarized: urea formation, glutamine, plasma protein synthesis, lysosomal catabolism of aged plasma proteins.
• Liver-secreted signaling factors (proteins, metabolites, ncRNA) act in autocrine/paracrine/endocrine manner regulating systemic metabolism (e.g., FGF21, fetuin-A).
Zone 1 (periportal): high \text{O}2, gluconeogenesis, β-oxidation, urea cycle, glutaminase. Zone 2 (mid-lobular): proliferative reserve. Zone 3 (perivenous): low \text{O}2, glycolysis, lipogenesis, ketogenesis, Mevalonate, CYP450, glutathione S-transferase (GST), bilirubin conjugation.
• Periportal cells: glutaminase + GDH + CPS-I + urea cycle → ammonia → urea.
• Perivenous cells: glutamine synthetase “scavenges” residual NH4^+.
• Kidney: glutaminase again liberates NH4^+ for proton excretion (acidosis increases Gln synthesis in liver).
Inflammation → cytokines (IL-6, IL-1β, TNF-α) re-program hepatocyte transcription → dramatic change in serum protein profile (“positive” vs “negative” APPs).
Positive APPs:
• Complement (C2,3,4,5,9) – opsonization/lysis.
• Coagulation (fibrinogen, vWF).
• Protease inhibitors (α1-antitrypsin, α2-antiplasmin, C1-inh).
• Metal handling: hepcidin (↓Fe), haptoglobin (binds Hb), hemopexin (heme).
• “Major APPs”: serum amyloid A (SAA), C-reactive protein (CRP), manganese SOD, etc.
Negative APPs (decreased synthesis): albumin, transferrin, Apo A-I/A-II.
• CRP rises within 6\text{–}8\,\text{h}, peaks \sim48\,\text{h}; normal <8\,\text{mg L}^{-1}.
• Pentraxin structure (five identical sub-units).
• Functions: binds pneumococcal C-polysaccharide, opsonization, debris clearance.
Chronic inflammation → sustained SAA → proteolysis → Amyloid A fibrils (β-sheet) deposit in organs → dysfunction.
• Xenobiotic: non-nutritive foreign compound. Mostly hydrophobic.
• Phases:
– Phase 0: uptake/efflux transporters (e.g., intestine ABCG5/8).
– Phase I: functionalization (mostly oxidation by CYP, FMO).
– Phase II: conjugation (↑size, ↑water solubility).
– Phase III: export via ABC transporters to bile/urine.
• Enterocyte ABCG5/8 pump plant sterols (sitosterol) back to lumen; cholesterol partly effluxed (maintains balance).
Phase I
• Oxidation, reduction, hydrolysis.
• Enzymes: Flavin-containing monooxygenases (FMO), CYPs, oxidases.
Phase II
• Conjugations: glucuronidation, sulfation, acetylation, amino-acid, glutathione (mercapturate).
• Induction of CYP transcription via AhR/XenoRs; species & genetic variability.
• Biotransformation usually lowers toxicity, but can generate reactive intermediates (bioactivation).
• Hydrophilic drugs may skip Phase I/II and be excreted directly.
• CYP450 high in zone 3.
• Phase II enzymes (GST, UDP-GT) also higher perivenously but glutathione highest in zone 1 → gradient affects susceptibility to toxicants.
• ER membrane.
• NADPH donates 2 e^-; forms stable peroxyflavin; substrate binds after O_2.
• Broad specificity; important for soft-nucleophile oxidation (S, N).
• Heme monooxygenases in ER (microsomal) or mitochondrial inner membrane.
• Inducible transcriptionally.
• Xenobiotic: CYP1-4 (drug metabolism; \sim75\% clinical drugs by CYP1-3).
• Endogenous: CYP7-51 (cholesterol, eicosanoids, steroids, vit D).
• Origin: gene duplications; polymorphic.
• NADPH-CYP reductase (FAD/FMN) shuttles electrons one-by-one.
• Cytochrome b5 may assist.
• Reaction consumes \text{O}2 (one O → product, one → \text{H}2\text{O}).
• Aliphatic / aromatic hydroxylation, epoxidation, N/O/S-dealkylations, N- & S-oxidation, dehalogenation.
• Vitamin D activation/degradation.
• Mevalonate → cholesterol.
• Steroidogenesis (adrenal, gonad).
• Bile-acid synthesis (CYP7A1, etc.).
Multiple CYPs perform C-demethylations, double-bond migrations, etc.; mevalonate pathway most active in liver.
• CYP7A1 (cholesterol 7α-hydroxylase) = rate-limiting.
• Bile acids activate FXR → SHP → ↓CYP7A1 transcription (feedback).
• Cholecalciferol (skin/diet) → 25-hydroxylase (liver CYP2R1) → calcidiol.
• Kidney: 1α-hydroxylase (CYP27B1) → calcitriol (active) or 24-hydroxylase → inactive.
• Liver/kidney failure disrupts calcitriol synthesis.
• e^- flow: NADPH → adrenodoxin reductase (FAD) → adrenodoxin (2Fe-2S) → CYP (inner membrane).
• Eicosanoid epoxides (EETs) – vasodilatory, anti-inflammatory; degraded by soluble epoxide hydrolase.
• Ligands (dioxin, PAHs) bind cytosolic AhR → nucleus with ARNT → bind XRE → transcription of CYP1A1, 1A2, others, plus Phase II enzymes.
• RXR heterodimers: PXR, CAR, PPARγ, etc. Drug/metabolite binds → dimer → XRE in CYP 2/3 promoters.
• Rodent vs human CYP profiles differ – translational caveats.
• CYP2D6 polymorphic – >70 alleles; \approx 10\% Caucasians are poor metabolizers → adverse drug effects.
• Some xenobiotics cause hepatocyte proliferation (“hepatostat”).
• Bioactivation mechanisms:
– Stable toxic metabolites (e.g., CH2Cl2 → CO).
– Electrophilic intermediates (acetaminophen).
– Free-radical formation (CCl_4).
– Redox cycling compounds (paraquat).
CYP1 → epoxide → epoxide hydrolase → diol → further CYP → BPDE (mutagenic) → DNA adducts; detox via glucuronide, sulfate, GSH conjugates.
• Enzyme: UDP-glucuronosyl-transferase (UGT) (ER lumen).
• Cofactor: UDP-glucuronic acid (synth. from UDP-glucose + 2 NAD^+).
• Substrates: OH, COOH, NH_x, SH groups (bilirubin, drugs).
\text{UDP-glucose}+2\,\text{NAD}^+ \xrightarrow{\text{dehydrogenase}} \text{UDP-glucuronic acid}+2\,\text{NADH}+2H^+
• Sulfotransferases (cytosolic) use \text{PAPS} (3′-phosphoadenosine-5′-phosphosulfate).
• Acetyltransferases use acetyl-CoA (N-, O-, S-acetylations).
• Cholyl-CoA + glycine/taurine in peroxisome → glyco- or tauro-cholic acid (↓pK, ↑solubility).
• When ammonia excess, glutamine formation & amino-acid conjugations (benzoate → hippurate).
• ≈5 human genes; up to 10\% cytosolic protein in liver.
• Bind hydrophobic ligands (bilirubin, heme, drugs) – “intracellular albumin”.
• GST expression induced by electrophilic xenobiotics via Keap1-Nrf2 pathway.
• Hepatic [GSH] =4\text{–}10\,\text{mM} (~99 % reduced).
• Synthesis: γ-glutamyl-cysteine synthetase (rate-limiting) + GSH synthetase.
• Recycling: γ-glutamyl cycle uses NADPH (PPP) to regenerate GSH.
• CYP2E1 forms NAPQI (reactive).
• Detox via GSH; depletion → hepatotoxicity.
• Antidote: N-acetylcysteine replenishes GSH pool.
• MDR1 (ABCB1/P-gp) – hydrophobic drugs.
• MDR3 (ABCB4) – phosphatidylcholine.
• MRP2 (ABCC2) – glucuronide/sulfate/GSH conjugates.
• MRP4 (ABCC4) – cyclic nucleotides, anionic drugs.
• ABCG2 (BCRP) – drugs, porphyrins.
• ABCG5/8 – sterol efflux.
• ABCA1 – HDL formation, cholesterol export.
• MRP1 (ABCC1), MRP3, MRP5, MRP6 pump conjugates to blood → kidney → urine.
• ADH converts methanol → formaldehyde → formic acid → metabolic acidosis, ocular toxicity.
• Therapy: ethanol or fomepizole (ADH inhibitor) – competitive blockade.