Slide 1 – Title
EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Dietary Protein Requirements of Athletes (EXSS3071, 2025 S1).
Lecturer: Kenneth Daniel (APD, AFHEA); acknowledgements to Parker, Gifford, O’Connor, Miles, Hay.
Lecture frames protein as performance-limiting nutrient when poorly managed.
Slide 2 – Lecture Outline
EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Context/history. 2. Protein metabolism in exercise. 3. Timing, type & other modulators. 4. High vs low intakes. 5. Evidence-based recommendations.
Visual of trail runner emphasises training–nutrition synergy.
Slide 3 – Part 1 Introduction
EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Sets the historical and cultural backdrop for protein fascination in physique sports.
Slides 4-7 – Brief History of Bodybuilding
EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Ancient Greece: Milo of Croton demonstrates progressive overload ideology.
Grecian Ideal calculator: classical anthropometry targets.
Eugene Sandow (late 1800s) establishes modern bodybuilding shows.
Arnold Schwarzenegger era (1970s) popularises “golden-age” hypertrophy plus high-protein eating.
Citations to Mitchell et al. 2017 & Spendlove et al. 2015 highlight gap between practice and evidence.
Slide 8 – Pharmacology & Physique
EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Atlantic article graphic depicts impact of anabolic drugs on extreme muscularity—context for “natural” protein limits.
Slide 9 – Evolution of Swimmer Physique
EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Dawn Fraser (1950s) → Shane Gould (1970s) → Libby Trickett (2000s): increasing muscle mass mirrors advances in resistance training and recovery nutrition.
Slide 10 – Protein RDI vs Athletic Needs
EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Australian NRVs: 0.84 g kg⁻¹ d⁻¹ (men) / 0.75 (women) meet adequacy for 98 % of general population.
Athletes aim for optimal, not merely adequate, intake.
Slides 11-12 – Dietary Protein Sources
EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Meat & alternatives: lean beef, poultry, fish, eggs, tofu, legumes, nuts/seeds.
Dairy & alternatives: milk, yoghurt, cheese, soy drink.
Emphasis on combining plant and animal proteins for leucine thresholds.
Slide 13 – RDI vs EAR & Individualisation
EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
RDI ≠ personal requirement. EAR meets only 50 % of population.
Athletic “higher needs” drivers: tissue repair, immune function, lean-mass accrual.
Slide 14 – Do Athletes Need More Protein?
EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Tarnopolsky meta-analysis: strength & endurance training each elevate nitrogen losses and synthetic demands.
Slide 15 – Quantitative Targets
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Consensus range 1.2-2.0 g kg⁻¹ d⁻¹.
Practical pattern: 0.3 g kg⁻¹ (≈15-25 g) per meal and immediately after key sessions; supplies ≈10 g EAAs.
Periodise within micro- and macro-cycles.
Slide 16 – Beyond Quantity
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Critical modifiers: timing relative to exercise & CHO, even distribution, protein quality (PDCAAS/DIAAS), total energy availability.
Slide 17 – Part 2 Introduction
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Shifts focus to molecular roles and turnover dynamics during exercise.
Slide 18 – Protein Functions in Sport
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Structural (collagen, titin), contractile (actin, myosin), metabolic (mitochondrial enzymes), haematological (Hb/albumin).
Training remodels each pool; diet must support synthesis.
Slide 19 – Essential vs Non-Essential AAs
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
20 proteinogenic AAs; 9 essential for adults; branched-chain (Leu, Ile, Val) highlighted.
Slide 20 – Peptide Bond & Side-Chain Diversity
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Diagram shows alpha-carbon, amine, carboxyl groups and unique R-chains; peptide bonds form via condensation reaction.
Slide 21 – Daily AA Recycling
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Endogenous turnover ≈300 g d⁻¹; exercise accelerates flux; majority of catabolised N lost as urea.
Slide 22 – Measuring Requirements
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Classic nitrogen balance: Protein (g) ÷ 6.25 = N (g).
Modern tracer & biopsy techniques (¹³C-leucine oxidation, FSR) give higher precision.
Slide 23 – Protein Use During Exercise
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
BCAAs preferentially oxidised; GDH activity rises from 5-8 % (rest) to 20-25 % (exercise).
Slide 24 – Regulation of GDH
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Activated by low ATP/low glycogen/high ADP; suppressed by CHO loading or intra-workout CHO, which spares muscle protein.
Slide 25 – Quantifying Oxidation in Endurance
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
AA supply 2-6 % of exercise energy; oxidation ↑ with intensity, glycogen depletion, higher dietary protein and in males.
Slide 26 – Training-Induced Protein Sparing
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
38-day endurance program ↓ leucine oxidation & GDH activity, reflecting metabolic shift to lipid & glycogen preservation.
Slide 27 – Protein Balance & Resistance Exercise
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Feeding turns negative balance positive; RT further elevates synthesis for up to 48 h post-bout.
Slide 28 – Fed vs Fasted × RT Matrix
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Best-case: fed + RT → maximal net balance; fasting blunts MPS despite RT stimulus.
Slide 29 – Novice vs Trained Anabolism
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Untrained athletes display larger absolute synthesis & breakdown; can gain 0.25-0.5 kg lean wk⁻¹ with adequate protein/energy.
Slide 30 – Part 3 Introduction
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Explores practical ingestion variables: timing, dose, distribution, type.
Slide 31 – Timing: Pre/During Exercise
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Little evidence that pre protein boosts acute performance, but may supply AA pool for recovery.
Endurance bouts >90 min: small protein + CHO during work may reduce endogenous oxidation and later soreness.
RT sessions >2 h: during-protein may help.
Slides 32-33 – Timing: Post Exercise
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
MPS elevated for 24 h; “anabolic window” optimal 0-2 h.
Meta-analysis (Schoenfeld et al. 2013) finds timing matters when total daily protein is not already high.
Slide 34 – Optimal Single Dose
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Dose-response plateaus at ~20 g high-quality protein (~10 g EAAs) for average-size athlete; larger bodies may need 0.4 g kg⁻¹.
Slide 35 – Distribution Strategies
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Bolus (2 × 40 g), Pulse (8 × 10 g), Intermediate (4 × 20 g).
Intermediate every 3 h produced greatest 12 h myofibrillar synthesis (Areta et al. 2013).
Slides 36-37 – Pre-Sleep Protein
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
30-40 g casein ~30 min before bed augments overnight MPS and long-term hypertrophy, especially in evening-trained athletes.
Slide 38 – Is Whey the Way?
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Whey is rapid-digesting, leucine-rich; studies (Hartman 2007, Cribb 2006) show superior lean-mass gains vs soy/casein when post-exercise.
Slide 39 – Leucine Trigger Mechanism
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Leucine (≥2-3 g) activates mTORC1 → ↑ translation initiation and MPS.
Slide 40 – Energy & Macronutrient Needs for Hypertrophy
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Energy surplus 1500-2000 kJ d⁻¹ plus ~1.6 g kg⁻¹ protein maximises muscle gain; adequate CHO supports RT performance.
Slide 41 – Hormonal Modulators: Testosterone
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Supra-physiological doses ↑ lean mass even without exercise; resistance training magnifies effect; WADA banned.
Slide 42 – Hormonal Modulators: Insulin
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Insulin amplifies AA uptake and MPS; rationale for CHO + protein co-ingestion in early recovery phase.
Slide 43 – Part 4 Introduction
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Examines risks and special situations: excess intake, low intake, ageing, energy deficit, injury.
Slide 44 – Risks of Excessive Intake
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Intakes 1.4-1.9 g kg⁻¹ typical; >3 g kg⁻¹ may displace other nutrients and waste money; no strong evidence of kidney/bone harm in healthy adults.
Slide 45 – Athletes at Risk of Low Intake
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Weight-category sports, aesthetic sports, extreme vegetarians, eating-disorder cohorts.
Slide 46 – Older Athletes
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Anabolic resistance: suggest ≥1.2 g kg⁻¹, 35-40 g leucine-rich doses, and resistance exercise; adjust downward with renal impairment.
Slide 47 – Negative Energy Balance
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Energy deficit ↓ MPS; increase per-meal protein to 0.3-0.4 g kg⁻¹, maintain RT to spare lean mass.
Slide 48 – Injury & Bed Rest
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
7 d bed rest can cut lean mass by 1.4 kg and insulin sensitivity by 29 %; neuromuscular electrical stimulation + pre-sleep casein mitigates loss.
Slide 49 – Part 5 Introduction
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Translates evidence into field practice.
Slide 50 – Position Statements
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Key references: ACSM/AND/CSEP 2016, IAAF 2019—provide sport-specific protein guidelines.
Slide 51 – Practice Tips
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Strength phase: 1.6-1.7 g kg⁻¹; distribute evenly; prioritise 0-2 h post-exercise; excess beyond 2.2 g kg⁻¹ offers no added benefit.
Slide 52 – Do Athletes Meet Targets?
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Survey data show most exceed RDI but distribution and timing often sub-optimal.
Slide 53 – Whole-Food Emphasis
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Dietitians favour minimally processed lean meats, dairy and legumes before defaulting to supplements.
Slide 54 – Milk vs Protein Powder Economics
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
| Item (per 20 g protein) | Cost (AUD) | Notes |
| Skim milk | ≈$0.60 | Includes CHO, Ca²⁺, fluids |
| Skim milk powder | ≈$0.50 | Portable |
| Whey powder | ≈$2.00 | Rapid digestion, higher leucine |
Slide 55 – Timing Graphic
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Reinforces 4 × 20 g pattern plus casein before sleep for maximal daily MPS.
Slides 56-59 – Sport-Specific Applications
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Middle/Long-Distance Running: 1.2-1.6 g kg⁻¹, focus on recovery snack + mixed meals; monitor energy availability.
Swimming/Rowing: high-volume training—multi-snack strategy, protein-CHOC milk post-pool, evening casein; account for early-morning sessions.
Slide 60 – End / Thank You
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Invites questions.
Slides 61-62 – Lecture Objectives (Recap)
‡EXSS3071+Protein+Requirements+Lecture+2025+S1.pdf](file-service://file-7FYPXAX7Hng5dmV7fVZUSo)
Essential AA count (20 AAs; 9 EAA).
BCAA identification.
Conditions increasing AA oxidation.
Training-specific protein needs.
Interaction of CHO/energy with lean-mass gain.
Timing strategies, risks of excess, groups prone to deficiency, nitrogen-balance basics, whey vs casein differences.