Lines & Angles
Supplementary Angles: a + b = 180^\circ
Complementary Angles: a + b = 90^\circ
Vertical Angles: Equal (congruent)
Parallel Lines Cut by a Transversal:
Alternate interior angles = congruent
Corresponding angles = congruent
Same-side interior = supplementary
🔺
Triangles
Area:
A = \frac{1}{2} \cdot \text{base} \cdot \text{height}
Pythagorean Theorem (Right triangle):
a^2 + b^2 = c^2
Triangle Sum Theorem:
a + b + c = 180^\circ
45°-45°-90° Triangle:
x : x : x\sqrt{2}
30°-60°-90° Triangle:
x : x\sqrt{3} : 2x
⚪
Circles
Circumference:
C = 2\pi r \text{ or } \pi d
Area:
A = \pi r^2
Arc Length:
\frac{\theta}{360} \cdot 2\pi r
Sector Area:
\frac{\theta}{360} \cdot \pi r^2
Equation of a Circle:
(x - h)^2 + (y - k)^2 = r^2
📐
Quadrilaterals
Area of a Rectangle/Square:
A = \text{base} \cdot \text{height}
Area of a Trapezoid:
A = \frac{1}{2} (b_1 + b_2) \cdot h
Area of a Parallelogram:
A = b \cdot h
🧊
3D Figures (Volume & Surface Area)
Prism & Cylinder:
Volume:
V = B \cdot h
Surface Area of Cylinder:
SA = 2\pi r^2 + 2\pi rh
Pyramid & Cone:
Volume:
V = \frac{1}{3} B h
Surface Area of Cone:
SA = \pi r^2 + \pi r l
Sphere:
Volume:
V = \frac{4}{3} \pi r^3
Surface Area:
SA = 4\pi r^2
📐
Coordinate Geometry
Distance Formula:
\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
Midpoint Formula:
\left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)
Slope Formula:
\frac{y_2 - y_1}{x_2 - x_1}