Pulmonary/Respiration Responses During Exercise – Chapter 10
Overview & Key Purposes
- Pulmonary (external) respiration
- Ventilation: bulk movement of air into/out of lungs
- Gas exchange in the lungs ( \text{O}2\uparrow,\;\text{CO}2\downarrow )
- Cellular (internal) respiration
- Tissue \text{O}2 utilization & \text{CO}2 production
- Primary duties of the system during exercise
- Maintain gas exchange between body & environment
- Regulate acid–base balance as metabolic rate rises
Four Sequential Processes of Respiration
- Pulmonary ventilation (movement of ambient air → alveoli)
- Alveolar gas exchange (alveolus ⇌ pulmonary capillary)
- Gas transport (via blood circulation)
- Systemic gas exchange (capillary ⇌ working cells)
Structural Organization
- Upper tract: nose, nasal cavity, pharynx, larynx
- Lower tract: trachea, bronchial tree, lungs
- Zones
- Conducting zone
- Trachea → terminal bronchioles (humidify, warm, filter)
- Dead-space volume ( V_D )
- Respiratory zone
- Respiratory bronchioles, alveolar ducts/sacs
- Site of diffusion; surfactant prevents collapse
- Pleural membranes
- Visceral (lung surface) & parietal (thoracic wall)
- Intrapleural pressure < atmospheric → keeps alveoli patent
Microscopic Anatomy
- ~8\times10^6 terminal bronchioles; 5\times10^5 respiratory bronchioles; 8\times10^6 alveolar sacs
- Alveolar cells
- Type I: thin plates, 95 % surface → diffusion surface
- Type II: progenitor “caretaker”, secretes surfactant, proliferates after injury
- Resident macrophages for immune defense
Mechanics of Breathing (Bulk Flow)
- Inspiration (active)
- Diaphragm descends, external intercostals lift ribs → thoracic volume ↑
- Intrapulmonary P drops (~-2\;\text{mmHg}) ⇒ air in
- Expiration (passive at rest)
- Diaphragm & ribs recoil, volume ↓, pressure ↑ ⇒ air out
- Accessory muscles
- Inspiration: sternocleidomastoid, scalenes
- Expiration (forced/exercise): internal intercostals, abdominals
- Exercise adaptations
- Respiratory muscles DO fatigue when >120 min or 90–100\%\,\dot V!O_2^{max}
- Endurance training ↑ oxidative capacity → ↓ work of breathing
Airflow & Resistance
- Poiseuille-like relationship \displaystyle \text{Airflow}=\frac{P1-P2}{\text{Resistance}}
- Resistance (\propto 1/\text{radius}^4); diameter ↓ in:
- Asthma/Exercise-induced bronchospasm (transient)
- Chronic obstructive pulmonary disease (COPD)
- Chronic bronchitis: mucus hyper-secretion
- Emphysema: airway collapse, alveolar destruction
Pulmonary Ventilation Variables
- Minute ventilation: V=\dot VE=VT\times f (tidal volume × frequency)
- Partitioning ⇒ \dot VE=\dot VA+\dot V_D
- \dot V_A = alveolar ventilation (reaches respiratory zone)
- \dot V_D = dead-space ventilation
Lung Volumes & Capacities (Typical 70 kg male)
- Volumes
- V_T=500\;\text{ml}
- IRV=3000\;\text{ml}
- ERV=1200\;\text{ml}
- RV=1300\;\text{ml}
- Capacities & formulae
- Vital capacity VC=IRV+V_T+ERV=4700\;\text{ml}
- Inspiratory capacity IC=V_T+IRV=3500\;\text{ml}
- Functional residual capacity FRC=ERV+RV=2500\;\text{ml}
- Total lung capacity TLC=VC+RV=6000\;\text{ml}
- Spirometry
- FEV1: air exhaled in 1 s; FEV1/VC\ge80\% normal; COPD ~\le33\%
Gas Laws & Diffusion
- Dalton: P{air}=P{O2}+P{CO2}+P{N_2}
- At 760\;\text{mmHg} → P{O2}=159\;\text{mmHg}
- Fick’s Law \displaystyle \dot V{gas}=\frac{A\,D\,(P1-P_2)}{T}
- ↑ area, ↑ gradient, ↓ thickness ⇒ ↑ diffusion
- Altitude effect (selected values)
- 0\,\text{m}: PB=760\;\text{mmHg}, P{iO_2}=149
- 4000\,\text{m}: PB=440, P{iO_2}\approx92
- Hypoxic ventilatory response (>1200\,\text{m})
- Hyperventilation ⇒ PCO_2 ↓ ⇒ respiratory alkalosis, curve left shift, saturation maintained
- High-altitude illness: AMS, HAPE, HACE
Pulmonary & Systemic Circulation
- Pulmonary circuit: same flow, ~1/5 systemic pressure
- Gravitational distribution at rest
- Base: high perfusion (V/Q
- Exercise
- Light → improves V/Q toward \approx1
- Heavy → mismatch due to diffusion/perfusion limits
Ventilation–Perfusion (V/Q) Data (upright)
| Region | Ventilation (L·min⁻¹) | Blood flow (L·min⁻¹) | V/Q |
| Apex | 0.24 | 0.07 | 3.43 |
| Base | 0.82 | 1.29 | 0.64 |
Oxygen Transport
- \approx98\% bound to hemoglobin (Hb)
- Capacity: 1.34\;\text{ml O}_2\cdot\text{g}^{-1}\,Hb
- Content (100 % sat):
- Males: [Hb]=150\;\text{g·L}^{-1} \Rightarrow 200\;\text{ml O}_2·L^{-1}
- Females: [Hb]=130 \Rightarrow 174\;\text{ml O}_2·L^{-1}
- Hb–O2 reaction: \text{Hb}+O2\rightleftharpoons\text{HbO}2
- Direction depends on P{O2} & affinity
- Lung (high P{O2}): loading; Tissues (low P{O2}): unloading
- Oxy-Hb dissociation curve
- Sigmoidal; large unloading between 60\to20\;\text{mmHg}
- Bohr effect (right shift)
- ↓pH, ↑temperature, ↑2-3 DPG ⇒ ↓affinity ⇒ enhanced off-loading
- Sex difference: women’s smaller airway diameter → ↑ work of breathing at high intensities
Myoglobin
- Higher affinity than Hb; hyperbolic curve
- Acts as O₂ reservoir & shuttle within muscle, smoothing transition at exercise onset
Carbon Dioxide Transport
- \sim70\% as bicarbonate; \sim20\% carbamino-Hb; \sim10\% dissolved
- Key reaction (catalyzed by carbonic anhydrase):
\text{CO}2+\text{H}2\text{O}\rightleftharpoons\text{H}2\text{CO}3\rightleftharpoons\text{H}^++\text{HCO}_3^- - Tissue: \text{HCO}3^- exits RBC (Cl⁻ shift) ; Lung: reaction reverses when O2 binds Hb
- RER > 1 during heavy exercise arises from non-metabolic \text{CO}_2 (buffering lactic acid)
Acid–Base Balance via Ventilation
- ↑Ventilation ⇒ PCO_2 ↓ ⇒ H⁺ ↓ ⇒ pH ↑ (respiratory alkalosis)
- ↓Ventilation ⇒ PCO_2 ↑ ⇒ H⁺ ↑ ⇒ pH ↓ (respiratory acidosis)
Dynamic Responses to Exercise
- Rest→steady submaximal
- VE rises sharply, then plateaus; P{O2} slight ↓, P{CO2} slight ↑
- Incremental (untrained)
- VE linear to \approx50–75\%\,\dot V!O2^{max}, then exponential rise (ventilatory threshold (T{vent}))
- P{O2} maintained (±10 mmHg)
- Elite endurance athletes
- (T{vent}) occurs at higher %; but arterial P{O_2} may fall 30–40 mmHg (exercise-induced hypoxemia) due to Q̇ ↑ & diffusion limits
- Prolonged exercise in heat
- “Ventilatory drift” upward; not driven by PCO_2 changes (thermal, catecholamine influences)
- Breathing pattern shifts with intensity
- Early: ↑tidal volume; High: ↑frequency predominates
Ventilatory Control Mechanisms
- Respiratory Control Center (medulla & pons)
- Pre-Bötzinger & RTN (medulla): rhythm generation & CO₂ sensitivity
- Pneumotaxic & caudal pons: fine-tune pattern
- Efferents: phrenic nerve (diaphragm) + spinal motor neurons
- Humoral chemoreceptors
- Central (medullary): respond to CSF H^+,\,PCO_2
- Peripheral (carotid, aortic bodies): sense arterial PO2,\,PCO2,\,pH,\,K^+
- Neural
- Higher brain centers (central command)
- Muscle mechanoreceptors & metaboreceptors (pH, K⁺)
Exercise Control Scheme (Submaximal)
- Central command initiates ↑VE
- Muscle & peripheral feedback + blood gases fine-tune to metabolic needs
- Heavy exercise: lactic acidosis, ↑K⁺, ↑temp stimulate carotid bodies => additional VE rise
- Pulmonary structure unchanged by endurance training (lungs already over-built)
- Training ↓ VE at given submaximal workload (≈20–30 %)
- Due to ↑ oxidative capacity & ↓ afferent feedback from locomotor muscles ⇒ ↓ H⁺ production
- Pulmonary system as limiter
- Low–moderate intensity: not limiting
- Healthy fit individuals at sea level: lungs usually adequate
- Elite athletes at >95\%\,\dot V!O_2^{max}: respiratory muscle fatigue & arterial hypoxemia may limit performance (~40–50 % of elite endurance athletes)
Special Topics
- Exercise-induced asthma: bronchospasm during/after exercise → dyspnea, ↓ performance
- "Stitch" (exercise-related transient abdominal pain): likely irritation of parietal peritoneum; avoid large meals/fluids pre-exercise
- Sex differences: smaller female airways → ↑ resistance, ↑ work of breathing during severe efforts
- Airflow equation \dot V=\frac{P1-P2}{R}
- Minute ventilation \dot VE=VT\,f
- Partitioning \dot VE=\dot VA+\dot V_D
- Capacities
- Fick’s diffusion \dot V{gas}=\frac{A\,D\,(P1-P_2)}{T}
- Hb carrying capacity 1.34\;\text{ml O}_2/\text{g Hb}
- Oxygen content examples
- [Hb]{male}\times1.34=200\;\text{ml O}2·L^{-1}
- Spirometric indices
- Normal FEV_1/VC\ge80\%; COPD \approx33\%
Ethical / Practical Implications
- Accurate spirometry essential for COPD/asthma diagnosis & exercise clearance
- Understanding altitude effects critical for mountaineers & military; gradual ascent prevents AMS/HAPE/HACE
- Sex-specific research required due to differing ventilatory mechanics
- Training respiratory muscles (inspiratory muscle training) may aid patients & select athletes