BG

Pulmonary/Respiration Responses During Exercise – Chapter 10

Overview & Key Purposes

  • Pulmonary (external) respiration
    • Ventilation: bulk movement of air into/out of lungs
    • Gas exchange in the lungs ( \text{O}2\uparrow,\;\text{CO}2\downarrow )
  • Cellular (internal) respiration
    • Tissue \text{O}2 utilization & \text{CO}2 production
  • Primary duties of the system during exercise
    • Maintain gas exchange between body & environment
    • Regulate acid–base balance as metabolic rate rises

Four Sequential Processes of Respiration

  1. Pulmonary ventilation (movement of ambient air → alveoli)
  2. Alveolar gas exchange (alveolus ⇌ pulmonary capillary)
  3. Gas transport (via blood circulation)
  4. Systemic gas exchange (capillary ⇌ working cells)

Structural Organization

  • Upper tract: nose, nasal cavity, pharynx, larynx
  • Lower tract: trachea, bronchial tree, lungs
  • Zones
    • Conducting zone
    • Trachea → terminal bronchioles (humidify, warm, filter)
    • Dead-space volume ( V_D )
    • Respiratory zone
    • Respiratory bronchioles, alveolar ducts/sacs
    • Site of diffusion; surfactant prevents collapse
  • Pleural membranes
    • Visceral (lung surface) & parietal (thoracic wall)
    • Intrapleural pressure < atmospheric → keeps alveoli patent

Microscopic Anatomy

  • ~8\times10^6 terminal bronchioles; 5\times10^5 respiratory bronchioles; 8\times10^6 alveolar sacs
  • Alveolar cells
    • Type I: thin plates, 95 % surface → diffusion surface
    • Type II: progenitor “caretaker”, secretes surfactant, proliferates after injury
    • Resident macrophages for immune defense

Mechanics of Breathing (Bulk Flow)

  • Inspiration (active)
    • Diaphragm descends, external intercostals lift ribs → thoracic volume ↑
    • Intrapulmonary P drops (~-2\;\text{mmHg}) ⇒ air in
  • Expiration (passive at rest)
    • Diaphragm & ribs recoil, volume ↓, pressure ↑ ⇒ air out
  • Accessory muscles
    • Inspiration: sternocleidomastoid, scalenes
    • Expiration (forced/exercise): internal intercostals, abdominals
  • Exercise adaptations
    • Respiratory muscles DO fatigue when >120 min or 90–100\%\,\dot V!O_2^{max}
    • Endurance training ↑ oxidative capacity → ↓ work of breathing

Airflow & Resistance

  • Poiseuille-like relationship \displaystyle \text{Airflow}=\frac{P1-P2}{\text{Resistance}}
  • Resistance (\propto 1/\text{radius}^4); diameter ↓ in:
    • Asthma/Exercise-induced bronchospasm (transient)
    • Chronic obstructive pulmonary disease (COPD)
    • Chronic bronchitis: mucus hyper-secretion
    • Emphysema: airway collapse, alveolar destruction

Pulmonary Ventilation Variables

  • Minute ventilation: V=\dot VE=VT\times f (tidal volume × frequency)
  • Partitioning ⇒ \dot VE=\dot VA+\dot V_D
    • \dot V_A = alveolar ventilation (reaches respiratory zone)
    • \dot V_D = dead-space ventilation

Lung Volumes & Capacities (Typical 70 kg male)

  • Volumes
    • V_T=500\;\text{ml}
    • IRV=3000\;\text{ml}
    • ERV=1200\;\text{ml}
    • RV=1300\;\text{ml}
  • Capacities & formulae
    • Vital capacity VC=IRV+V_T+ERV=4700\;\text{ml}
    • Inspiratory capacity IC=V_T+IRV=3500\;\text{ml}
    • Functional residual capacity FRC=ERV+RV=2500\;\text{ml}
    • Total lung capacity TLC=VC+RV=6000\;\text{ml}
  • Spirometry
    • FEV1: air exhaled in 1 s; FEV1/VC\ge80\% normal; COPD ~\le33\%

Gas Laws & Diffusion

  • Dalton: P{air}=P{O2}+P{CO2}+P{N_2}
    • At 760\;\text{mmHg} → P{O2}=159\;\text{mmHg}
  • Fick’s Law \displaystyle \dot V{gas}=\frac{A\,D\,(P1-P_2)}{T}
    • ↑ area, ↑ gradient, ↓ thickness ⇒ ↑ diffusion
  • Altitude effect (selected values)
    • 0\,\text{m}: PB=760\;\text{mmHg}, P{iO_2}=149
    • 4000\,\text{m}: PB=440, P{iO_2}\approx92
  • Hypoxic ventilatory response (>1200\,\text{m})
    • Hyperventilation ⇒ PCO_2 ↓ ⇒ respiratory alkalosis, curve left shift, saturation maintained
  • High-altitude illness: AMS, HAPE, HACE

Pulmonary & Systemic Circulation

  • Pulmonary circuit: same flow, ~1/5 systemic pressure
  • Gravitational distribution at rest
    • Base: high perfusion (V/Q
  • Exercise
    • Light → improves V/Q toward \approx1
    • Heavy → mismatch due to diffusion/perfusion limits

Ventilation–Perfusion (V/Q) Data (upright)

| Region | Ventilation (L·min⁻¹) | Blood flow (L·min⁻¹) | V/Q |
| Apex | 0.24 | 0.07 | 3.43 |
| Base | 0.82 | 1.29 | 0.64 |


Oxygen Transport

  • \approx98\% bound to hemoglobin (Hb)
    • Capacity: 1.34\;\text{ml O}_2\cdot\text{g}^{-1}\,Hb
    • Content (100 % sat):
    • Males: [Hb]=150\;\text{g·L}^{-1} \Rightarrow 200\;\text{ml O}_2·L^{-1}
    • Females: [Hb]=130 \Rightarrow 174\;\text{ml O}_2·L^{-1}
  • Hb–O2 reaction: \text{Hb}+O2\rightleftharpoons\text{HbO}2
    • Direction depends on P{O2} & affinity
    • Lung (high P{O2}): loading; Tissues (low P{O2}): unloading
  • Oxy-Hb dissociation curve
    • Sigmoidal; large unloading between 60\to20\;\text{mmHg}
    • Bohr effect (right shift)
    • ↓pH, ↑temperature, ↑2-3 DPG ⇒ ↓affinity ⇒ enhanced off-loading
  • Sex difference: women’s smaller airway diameter → ↑ work of breathing at high intensities

Myoglobin

  • Higher affinity than Hb; hyperbolic curve
  • Acts as O₂ reservoir & shuttle within muscle, smoothing transition at exercise onset

Carbon Dioxide Transport

  • \sim70\% as bicarbonate; \sim20\% carbamino-Hb; \sim10\% dissolved
  • Key reaction (catalyzed by carbonic anhydrase):
    \text{CO}2+\text{H}2\text{O}\rightleftharpoons\text{H}2\text{CO}3\rightleftharpoons\text{H}^++\text{HCO}_3^-
  • Tissue: \text{HCO}3^- exits RBC (Cl⁻ shift) ; Lung: reaction reverses when O2 binds Hb
  • RER > 1 during heavy exercise arises from non-metabolic \text{CO}_2 (buffering lactic acid)

Acid–Base Balance via Ventilation

  • ↑Ventilation ⇒ PCO_2 ↓ ⇒ H⁺ ↓ ⇒ pH ↑ (respiratory alkalosis)
  • ↓Ventilation ⇒ PCO_2 ↑ ⇒ H⁺ ↑ ⇒ pH ↓ (respiratory acidosis)

Dynamic Responses to Exercise

  1. Rest→steady submaximal
    • VE rises sharply, then plateaus; P{O2} slight ↓, P{CO2} slight ↑
  2. Incremental (untrained)
    • VE linear to \approx50–75\%\,\dot V!O2^{max}, then exponential rise (ventilatory threshold (T{vent}))
    • P{O2} maintained (±10 mmHg)
  3. Elite endurance athletes
    • (T{vent}) occurs at higher %; but arterial P{O_2} may fall 30–40 mmHg (exercise-induced hypoxemia) due to Q̇ ↑ & diffusion limits
  4. Prolonged exercise in heat
    • “Ventilatory drift” upward; not driven by PCO_2 changes (thermal, catecholamine influences)
  5. Breathing pattern shifts with intensity
    • Early: ↑tidal volume; High: ↑frequency predominates

Ventilatory Control Mechanisms

  • Respiratory Control Center (medulla & pons)
    • Pre-Bötzinger & RTN (medulla): rhythm generation & CO₂ sensitivity
    • Pneumotaxic & caudal pons: fine-tune pattern
  • Efferents: phrenic nerve (diaphragm) + spinal motor neurons

Afferent Inputs

  1. Humoral chemoreceptors
    • Central (medullary): respond to CSF H^+,\,PCO_2
    • Peripheral (carotid, aortic bodies): sense arterial PO2,\,PCO2,\,pH,\,K^+
  2. Neural
    • Higher brain centers (central command)
    • Muscle mechanoreceptors & metaboreceptors (pH, K⁺)

Exercise Control Scheme (Submaximal)

  • Central command initiates ↑VE
  • Muscle & peripheral feedback + blood gases fine-tune to metabolic needs
  • Heavy exercise: lactic acidosis, ↑K⁺, ↑temp stimulate carotid bodies => additional VE rise

Training Adaptations & Performance Limitation

  • Pulmonary structure unchanged by endurance training (lungs already over-built)
  • Training ↓ VE at given submaximal workload (≈20–30 %)
    • Due to ↑ oxidative capacity & ↓ afferent feedback from locomotor muscles ⇒ ↓ H⁺ production
  • Pulmonary system as limiter
    • Low–moderate intensity: not limiting
    • Healthy fit individuals at sea level: lungs usually adequate
    • Elite athletes at >95\%\,\dot V!O_2^{max}: respiratory muscle fatigue & arterial hypoxemia may limit performance (~40–50 % of elite endurance athletes)

Special Topics

  • Exercise-induced asthma: bronchospasm during/after exercise → dyspnea, ↓ performance
  • "Stitch" (exercise-related transient abdominal pain): likely irritation of parietal peritoneum; avoid large meals/fluids pre-exercise
  • Sex differences: smaller female airways → ↑ resistance, ↑ work of breathing during severe efforts

Numerical / Formula Summary

  • Airflow equation \dot V=\frac{P1-P2}{R}
  • Minute ventilation \dot VE=VT\,f
  • Partitioning \dot VE=\dot VA+\dot V_D
  • Capacities
    • VC=IRV+ERV+V_T
    • TLC=VC+RV
  • Fick’s diffusion \dot V{gas}=\frac{A\,D\,(P1-P_2)}{T}
  • Hb carrying capacity 1.34\;\text{ml O}_2/\text{g Hb}
  • Oxygen content examples
    • [Hb]{male}\times1.34=200\;\text{ml O}2·L^{-1}
  • Spirometric indices
    • Normal FEV_1/VC\ge80\%; COPD \approx33\%

Ethical / Practical Implications

  • Accurate spirometry essential for COPD/asthma diagnosis & exercise clearance
  • Understanding altitude effects critical for mountaineers & military; gradual ascent prevents AMS/HAPE/HACE
  • Sex-specific research required due to differing ventilatory mechanics
  • Training respiratory muscles (inspiratory muscle training) may aid patients & select athletes