CB

Probability and Statistics – Introductory Lecture Vocabulary

Course Administration

  • Department: Microsystems Engineering (IMTEK), University of Freiburg
  • Course: Probability & Statistics (Code 11LE50V-6100 – Lecture, 11LE50Ü-6100 – Exercise)
  • Lecturer: PD Dr. Cristian Pasluosta
    • Laboratory for Biomedical Microtechnology
    • Office: Room 201\text{-}00\text{-}022 / Phone: 7251
    • Email: cristian.pasluosta@imtek.de
  • Tutor / Exercise leader: Thomas Krauskopf
    • Email: thomas.krauskopf@imtek.uni-freiburg.de
  • Contact & consultation hours: by appointment (via the above e-mails)

Assessment & Participation

  • Written final exam
    • Weight: 100\% of final mark
  • Admission requirement:
    • Must achieve \ge 50\% of the points offered in the weekly exercises
  • No partial oral exam or bonus scheme was announced

Weekly Calendar (WS 2024/2025)

  • Lecture: Tuesdays 12:00 – 14:00
  • Exercise: Fridays 12:00 – 14:00 (begin 25 Oct 2024)
WeekDate (Tue)Lecture TopicDate (Fri)Exercise
115 Oct 2024Introduction18 Oct 2024— (no exercise)
222 Oct 2024Event Probabilities25 Oct 2024Introduction
329 Oct 2024Random Numbers01 Nov 2024— (All Saints)
405 Nov 2024Expectation Values08 Nov 2024Exercise 1
512 Nov 2024Law of Large Numbers & CLT15 Nov 2024Exercise 2
619 Nov 2024Probability Densities22 Nov 2024Exercise 3
726 Nov 2024Joint Distributions, Quantiles, Moments29 Nov 2024Exercise 4
803 Dec 2024MLE, MoM, Confidence Intervals06 Dec 2024Exercise 5
910 Dec 2024Intro to Hypothesis Tests13 Dec 2024Exercise 6
1017 Dec 2024— (no lecture)20 Dec 2024Exercise 7
24–31 Dec 2024— Christmas holidays
1107 Jan 2025t-Test10 Jan 2025Exercise 8
1214 Jan 2025$
\chi^2$ Goodness-of-Fit, ANOVA17 Jan 2025Exercise 9
1321 Jan 2025Wilcoxon, Mann–Whitney, Kruskal–Wallis24 Jan 2025Exercise 10
1428 Jan 2025Monte Carlo, Random Walks, Sample Size31 Jan 2025
1504 Feb 2025Exam Review07 Feb 2025

Learning Material Distribution

  • Lecture videos uploaded to Ilias (password: anova)
  • Hard-copy or PDF literature placed on the portal and/or in the library

Recommended Literature ("Dennis’ Choice")

  • Norbert Henze — Stochastik für Einsteiger (12th ed., Springer, 2018)
    • Cover formula shown: B(X)=\sqrt{x}\,f(x)\,dx
  • Lothar Papula — Mathematik für Ingenieure & Naturwissenschaftler 3
  • Herold Dehling & Beate Haupt — Einführung in die Wahrscheinlichkeitstheorie und Statistik
  • Jürgen Bortz & Christof Schuster — Statistik für Human- und Sozialwissenschaftler
  • W. J. Conover — Practical Nonparametric Statistics (3rd ed.)
  • Miller & Freund / R. A. Johnson — Probability & Statistics for Engineers (9th ed.)
  • Jim Pitman — Probability (Springer Texts in Statistics)
  • Aeneas Rooch — Statistik für Ingenieure

Software Helpers

  • Open-source: R, Gretl, SageMath, SymPy, Maxima, Axiom
  • Commercial / proprietary: Matlab (+ Statistics Toolbox), Mathematica, SPSS, Origin, Prism, MiniTab
  • Mobile (iPad): StatsMate, StatViz

Web Resources

  • http://www.statsoft.com/textbook/
  • http://stattrek.com/
  • http://www.r-project.org/
  • https://www.graphpad.com/data-analysis-resource-center/
  • https://www.real-statistics.com
  • https://sites.psu.edu/shinyapps/

Lecture 1: Intuition, Events & Probabilities

Everyday Motivation

  • Games of chance (lottery, roulette, poker, black jack)
  • Weather forecasts (e.g., “70\% chance of rain”)
  • Stock markets & insurance premiums
  • Political stalemates resolved by drawing lots (example: state parliament of Rhineland-Palatinate)
  • Engineering reliability: Mean-Time-Between-Failures (MTBF)
  • Scientific phenomena:
    • Diffusion of an ink drop vs. molecular motion
    • Radioactive decay: single \mathrm{^{14}C} atom vs. macroscopic sample

Recent & High-impact Applications

  • Medicine: reported therapy success rates at 95\% confidence
  • Biology: experimental design & statistical analysis
  • Traffic engineering: queuing theory for jams
  • Epidemiology: disease-spread modelling
  • Physics mega-projects (CERN, Manhattan, Apollo)

Historical Milestones

  • Ancient Greeks & Romans used bone dice
  • 1657 – Christiaan Huygens: Tractatus de Ratiociniis in Ludo Alea
  • 1749{-}1827 – Pierre-Simon Laplace: classical (Laplace) definition of probability
  • 1903{-}1987 – Andrey N. Kolmogorov: axiomatic foundation (three axioms)
  • 1994 Nobel Prize in Economics: Nash / Selten / Harsanyi (Game Theory)

What is Stochastic?

  • Deals with events that cannot be predicted deterministically due to incomplete information
  • Two branches:
    • Probability theory: modelling likelihood of outcomes
    • Statistics: analysing data arising from experiments

Ideal Random Experiment (Fisher, 1935)

  • Conducted under well-defined, reproducible conditions
  • Complete set of possible outcomes is known beforehand
  • In principle repeatable infinitely often under identical conditions

Fundamentals of Set Theory

Basic Terminology

  • Sample space: \Omega — the set of all possible outcomes
  • Elementary outcome: \omega (element of \Omega)
  • Subset: A\subseteq B means every \omega\in A is also in B
  • Superset: B\supseteq A (inverse relation)
  • Power set \mathcal P(S): set of all subsets of S (includes \varnothing and S itself)
  • Cardinality |A|: number of elements in a finite set A

Example

  • If S={a,b,c} then \mathcal P(S)={\varnothing,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}
    • |S|=3, |\mathcal P(S)|=2^3=8

Partition of a Set

  • A collection {A1,A2,\dots,An}\subseteq\Omega is a partition of A\subseteq\Omega if \bigcup{i=1}^{n} Ai = A Ai\cap A_j = \varnothing\quad (i\neq j)

Common Operators

  • Union: A\cup B — \omega\in A\text{ or }\omega\in B (or both)
  • Intersection: A\cap B — \omega in both A and B
  • Complement: A^c=\Omega\setminus A
  • Set difference: B\setminus A (elements in B not in A)
  • Empty set: \varnothing (impossible event)
  • Whole space \Omega (sure event)

Venn-Diagram Conventions

  • John Venn (1834–1923) visualised relations using overlapping circles

Algebraic Set Identities

  • Commutative:
    A\cap B = B\cap A , A\cup B = B\cup A
  • Associative:
    A\cap(B\cap C)=(A\cap B)\cap C , A\cup(B\cup C)=(A\cup B)\cup C
  • Distributive:
    A\cap(B\cup C)=(A\cap B)\cup(A\cap C)
  • De Morgan:
    (A\cup B)^c = A^c\cap B^c , (A\cap B)^c = A^c\cup B^c
  • Disjointness: A\cap B=\varnothing ⇒ events cannot co-occur

Probability-Related Notions (Preview of Upcoming Lectures)

  • Probability measure P, probability mass/function p(\omega)
  • Kolmogorov axioms (1–3): non-negativity, normalisation P(\Omega)=1, countable additivity
  • Laplace probability: P(A)=\dfrac{|A|}{|\Omega|} when outcomes are equally likely
  • Odds & ratio interpretation (\emph{"ratio-checker"} tool)
  • Basic distributions arising from Laplace principle:
    • Discrete uniform
    • Continuous (Laplace) distribution
  • Combinatorial building blocks (to be covered):
    • Ordered / unordered sampling
    • With / without replacement

Ethical & Practical Considerations

  • Statistics underpins medical decisions (therapy success at 95\% confidence)
  • Misinterpretation of probability can lead to policy errors (election polling, insurance risk)
  • Rigorous experimental design (Fisher) is essential for reproducibility

Connections & Future Outlook

  • Set theory & logic → foundation for Kolmogorov axioms
  • Combinatorics → counting techniques for probability calculation
  • Limit theorems (LLN, CLT) → bridge between probability & statistics
  • Estimation (MLE, MoM) → will rely on probability models developed here