VM

Chapter 15: Entropy and Free Energy

Chapter 15: Entropy and Free Energy

Gibbs Free Energy

  • Second Law of Thermodynamics: A process is spontaneous if
    DS{univ} = DS{syst} + DS_{surr} > 0

  • To analyze spontaneity based solely on the system:

    • DS{surr} = - \frac{\Delta H{system}}{T}
    • Combine to get:
      DS{universe} = DS{system} + [- \frac{\Delta H_{system}}{T}] > 0
    • Therefore,
      T \cdot DS{universe} = T \cdot DS{system} - \Delta H_{system} > 0
    • Rearranged gives:
      -T \cdot DS{universe} = \Delta H{system} - T \cdot DS_{system} < 0
  • Gibbs Free Energy (G) defined as:
    G = \Delta H - T \cdot DS

    • Units of G: kJ mol−1
    • At constant T and P:
    • Process is spontaneous only if \Delta G < 0
      • \Delta G < 0 → spontaneous forwards
      • \Delta G > 0 → NOT spontaneous forwards
      • \Delta G = 0 → equilibrium

Cases for Gibbs Free Energy

  1. Case 1:

    • \Delta H < 0 (exothermic) and DS > 0 (increase in entropy)
    • \Delta G = \Delta H - T \cdot DS = (-) - T (+) < 0
    • Always spontaneous (e.g., building collapsing into pile of bricks)
  2. Case 2:

    • \Delta H > 0 (endothermic) and DS < 0 (decrease in entropy)
    • \Delta G = \Delta H - T \cdot DS = (+) - T (-) > 0
    • Never spontaneous (e.g., pile of bricks assembling into a building)
  3. Case 3:

    • \Delta H > 0 and DS > 0
    • \Delta G = \Delta H - T \cdot DS = (+) - T(+) < 0
    • Spontaneous at high T (e.g., ice melting; water evaporating)
  4. Case 4:

    • \Delta H < 0 and DS < 0
    • \Delta G = \Delta H - T \cdot DS = (-) - T (-) < 0
    • Spontaneous at low T (e.g., water freezing; water vapor condensing)

Gibbs Free Energy Table

  • Summary of Cases:
DHDSDGSpontaneity
++< 0 at high TSpontaneous always
-> 0 alwaysNever spontaneous
-+< 0 alwaysSpontaneous always
--< 0 at low TSpontaneous at low T

Determining Temperature for Spontaneity

  • Identify what is meant by "high T" or "low T" :

    • Water freezing:
      • H2O(l) \rightleftharpoons H2O(s) (Spontaneous at low T, below 0 °C)
    • Water evaporating:
      • H2O(l) \rightleftharpoons H2O(g) (Spontaneous at high T, above 100 °C)
  • To find the temperature where equilibria occurs:

    • Set \Delta G = 0 (Equilibrium condition):
      0 = \Delta H - T \cdot DS
    • Rearranged gives:
      T = \frac{\Delta H}{DS}
    • Example:
      • For a reaction where
        \Delta H = 125 kJ mol^{-1} and
        DS = 325 J mol^{-1} K^{-1}, find the temperature (in °C) above which the reaction is spontaneous.

Entropy Change for Phase Changes

  • For phase changes:

    • \Delta G = \Delta H - T \cdot DS
    • Set equilibrium to zero:

    0 = \Delta H - T \cdot DS

    • Solving gives:
      DS = \frac{\Delta H}{T}
  • For example, considering water:

    • H2O(s) \rightleftharpoons H2O(l)
      • where
      • \Delta H = \Delta H_{fus}
      • T = melting point
    • H2O(l) \rightleftharpoons H2O(g)
      • where
      • \Delta H = \Delta H_{vap}
      • T = boiling point